首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
2.
Dyneins are large microtubule-based motor complexes that power a range of cellular processes including the transport of organelles, as well as the beating of cilia and flagella. The motor domain is located within the dynein heavy chain and comprises an N-terminal mechanical linker element, a central ring of six AAA + modules of which four bind or hydrolyze ATP, and a long stalk extending from the AAA + ring with a microtubule-binding domain (MTBD) at its tip. A crucial mechanism underlying the motile activity of cytoskeletal motor proteins is precise coupling between the ATPase and track-binding activities. In dynein, a stalk region consisting of a long (~ 15 nm) antiparallel coiled coil separates these two activities, which must facilitate communication between them. This communication is mediated by a small degree of helix sliding in the coiled coil. However, no high-resolution structure is available of the entire stalk region including the MTBD. Here, we have reported the structure of the entire stalk region of mouse cytoplasmic dynein in a weak microtubule-binding state, which was determined using X-ray crystallography, and have compared it with the dynein motor domain from Dictyostelium discoideum in a strong microtubule-binding state and with a mouse MTBD with its distal portion of the coiled coil fused to seryl-tRNA synthetase from Thermus thermophilus. Our results strongly support the helix-sliding model based on the complete structure of the dynein stalk with a different form of coiled-coil packing. We also propose a plausible mechanism of helix sliding together with further analysis using molecular dynamics simulations. Our results present the importance of conserved proline residues for an elastic motion of stalk coiled coil and imply the manner of change between high-affinity state and low-affinity state of MTBD.  相似文献   

3.
Formation of the 3' end of histone mRNA: getting closer to the end   总被引:1,自引:0,他引:1  
Dominski Z  Marzluff WF 《Gene》2007,396(2):373-390
Nearly all eukaryotic mRNAs end with a poly(A) tail that is added to their 3' end by the ubiquitous cleavage/polyadenylation machinery. The only known exceptions to this rule are metazoan replication-dependent histone mRNAs, which end with a highly conserved stem-loop structure. This distinct 3' end is generated by specialized 3' end processing machinery that cleaves histone pre-mRNAs 4-5 nucleotides downstream of the stem-loop and consists of the U7 small nuclear RNP (snRNP) and number of protein factors. Recently, the U7 snRNP has been shown to contain a unique Sm core that differs from that of the spliceosomal snRNPs, and an essential heat labile processing factor has been identified as symplekin. In addition, cross-linking studies have pinpointed CPSF-73 as the endonuclease, which catalyzes the cleavage reaction. Thus, many of the critical components of the 3' end processing machinery are now identified. Strikingly, this machinery is not as unique as initially thought but contains at least two factors involved in cleavage/polyadenylation, suggesting that the two mechanisms have a common evolutionary origin. The greatest challenge that lies ahead is to determine how all these factors interact with each other to form a catalytically competent processing complex capable of cleaving histone pre-mRNAs.  相似文献   

4.
The conserved DPY-30 is an essential component of the dosage compensation complex that balances the X-linked gene expression by regulation of the complex formation in Caenorhabditis elegans. The human DPY-30-like protein (DPY-30L) homolog is a conserved member of certain histone methyltransferase (HMT) complexes. In the human MLL1 (mixed-lineage leukemia-1) HMT complex, DPY-30L binds to the BRE2 homolog ASH2L in order to regulate histone 3-lysine 4 trimethylation. We have determined the 1.2-Å crystal structure of the human DPY-30L C-terminal domain (DPY-30LC). The DPY-30LC structure, harboring the conserved DPY-30 motif, is composed of two α-helices linked by a sharp loop and forms a typical X-type four-helix bundle required for dimer formation. DPY-30LC dimer formation is largely mediated by an extensive hydrophobic interface with some additional polar interactions. The oligomerization of DPY-30LC in solution, together with its reported binding to ASH2L, leads us to propose that the hydrophobic surface of the dimer may provide a platform for interaction with ASH2L in the MLL1 HMT complex.  相似文献   

5.
6.
In eukaryotes, polyadenylation of pre-mRNA 3' end is essential for mRNA export, stability, and translation. Here we identified and cloned a gene codifying for a putative nuclear poly(A) polymerase (EhPAP) in Entamoeba histolytica. Protein sequence alignments with eukaryotic PAPs showed that EhPAP has the RNA-binding region and the PAP central domain with the catalytic nucleotidyl transferase domain described for other nuclear PAPs. Recombinant EhPAP expressed in bacteria was used to generate specific antibodies, which recognized two EhPAP isoforms of 60 and 63kDa in nuclear and cytoplasmic extracts by Western blot assays. RT-PCR assays showed that EhPap mRNA expression varies in multidrug-resistant trophozoites growing in different emetine concentrations. Moreover, EhPap mRNA expression is about 10- and 7-fold increased in G1 and S phase, respectively, through cell cycle progression. These results suggest the existence of a link between EhPAP expression and MDR and cell cycle regulation, respectively.  相似文献   

7.
8.
Missense mutations in filamin B (FLNB) are associated with the autosomal dominant atelosteogenesis (AO) and the Larsen group of skeletal malformation disorders. These mutations cluster in particular FLNB protein domains and act in a presumptive gain-of-function mechanism. In contrast the loss-of-function disorder, spondylocarpotarsal synostosis syndrome, is characterised by the complete absence of FLNB. One cluster of AO missense mutations is found within the second of two calponin homology (CH) domains that create a functional actin-binding domain (ABD). This N-terminal ABD is required for filamin F-actin crosslinking activity, a crucial aspect of filamin's role of integrating cell-signalling events with cellular scaffolding and mechanoprotection. This study characterises the wild type FLNB ABD and investigates the effects of two disease-associated mutations on the structure and function of the FLNB ABD that could explain a gain-of-function mechanism for the AO diseases. We have determined high-resolution X-ray crystal structures of the human filamin B wild type ABD, plus W148R and M202V mutants. All three structures display the classic compact monomeric conformation for the ABD with the CH1 and CH2 domains in close contact. The conservation of tertiary structure in the presence of these mutations shows that the compact ABD conformation is stable to the sequence substitutions. In solution the mutant ABDs display reduced melting temperatures (by 6-7 °C) as determined by differential scanning fluorimetry. Characterisation of the wild type and mutant ABD F-actin binding activities via co-sedimentation assays shows that the mutant FLNB ABDs have increased F-actin binding affinities, with dissociation constants of 2.0 μM (W148R) and 0.56 μM (M202V), compared to the wild type ABD Kd of 7.0 μM. The increased F-actin binding affinity of the mutants presents a biochemical mechanism that differentiates the autosomal dominant gain-of-function FLNB disorders from those that arise through the complete loss of FLNB protein.  相似文献   

9.
Proteins can enter the nucleus through various receptor-mediated import pathways. One class of import cargos carries a classical nuclear localization signal (cNLS) containing a short cluster of basic residues. This pathway involves importin α (Impα), which possesses the cNLS binding site, and importin β (Impβ), which translocates the import complex through the nuclear pore complex. The defining criteria for a cNLS protein from Saccharomyces cerevisiae are an in vivo import defect in Impα and Impβ mutants, direct binding to purified Impα, and stimulation of this binding by Impβ. We show for the first time that endogenous S. cerevisiae proteins Prp20, Cdc6, Swi5, Cdc45, and Clb2 fulfill all of these criteria identifying them as authentic yeast cNLS cargos. Furthermore, we found that the targeting signal of Prp20 is a bipartite cNLS and that of Cdc6 is a monopartite cNLS. Basic residues present within these motifs are of different significance for the interaction with Impα. We determined the binding constants for import complexes containing the five cNLS proteins by surface plasmon resonance spectrometry. The dissociation constants for cNLS/α/β complexes differ considerably, ranging from 1 nM for Cdc6 to 112 nM for Swi5, suggesting that the nuclear import kinetics is determined by the strength of cNLS/Impα binding. Impβ enhances the affinity of Impα for cNLSs approximately 100-fold. This stimulation of cNLS binding to Impα results from a faster association in the presence of Impβ, whereas the dissociation rate is unaffected by Impβ. This implies that, after entry into the nucleus, the release of Impβ by the Ran guanosine triphosphatase (Ran GTPase) from the import complex is not sufficient to dissociate the cNLS/Impα subcomplex. Our observation that the nucleoporin Nup2, which had been previously shown to release the cNLS from Impα in vitro, is required for efficient import of all the genuine cNLS cargos supports a general role of Nup2 in import termination.  相似文献   

10.
11.
Conventional ubiquitylation occurs through an ATP-dependent three-enzyme cascade (E1, E2, and E3) that mediates the covalent conjugation of the C-terminus of ubiquitin to a lysine on the substrate. SdeA, which belongs to the SidE effector family of Legionella pneumophila, can transfer ubiquitin to endoplasmic reticulum-associated Rab-family GTPases in a manner independent of E1 and E2 enzymes. The novel ubiquitin-modifying enzyme SdeA utilizes NAD+ as a cofactor to attach ubiquitin to a serine residue of the substrate. Here, to elucidate the coupled enzymatic reaction of NAD + hydrolysis and ADP-ribosylation of ubiquitin in SdeA, we characterized the mono-ADP-ribosyltransferase domain of SdeA and show that it consists of two sub-domains termed mART-N and mART-C. The crystal structure of the mART-C domain of SdeA was also determined in free form and in complex with NAD+ at high resolution. Furthermore, the spatial orientations of the N-terminal deubiquitylase, phosphodiesterase, mono-ADP-ribosyltransferase, and C-terminal coiled-coil domains within the 180-kDa full-length SdeA were determined. These results provide insight into the unusual ubiquitylation mechanism of SdeA and expand our knowledge on the structure–function of mono-ADP-ribosyltransferases.  相似文献   

12.
In green sulfur photosynthetic bacteria, the cytochrome cz (cyt cz) subunit in the reaction center complex mediates electron transfer mainly from menaquinol/cytochrome c oxidoreductase to the special pair (P840) of the reaction center. The cyt cz subunit consists of an N-terminal transmembrane domain and a C-terminal soluble domain that binds a single heme group. The periplasmic soluble domain has been proposed to be highly mobile and to fluctuate between oxidoreductase and P840 during photosynthetic electron transfer. We have determined the crystal structure of the oxidized form of the C-terminal functional domain of the cyt cz subunit (C-cyt cz) from thermophilic green sulfur bacterium Chlorobium tepidum at 1.3-Å resolution. The overall fold of C-cyt cz consists of four α-helices and is similar to that of class I cytochrome c proteins despite the low similarity in their amino acid sequences. The N-terminal structure of C-cyt cz supports the swinging mechanism previously proposed in relation with electron transfer, and the surface properties provide useful information on possible interaction sites with its electron transfer partners. Several characteristic features are observed for the heme environment: These include orientation of the axial ligands with respect to the heme plane, surface-exposed area of the heme, positions of water molecules, and hydrogen-bond network involving heme propionate groups. These structural features are essential for elucidating the mechanism for regulating the redox state of cyt cz.  相似文献   

13.
A homodimeric GrpE protein functions as a nucleotide exchange factor of the eubacterium DnaK molecular chaperone system. The co-chaperone GrpE accelerates ADP dissociation from, and promotes ATP binding to, DnaK, which cooperatively facilitates the DnaK chaperone cycle with another co-chaperone, DnaJ. GrpE characteristically undergoes two-step conformational changes in response to elevation of the environmental temperature. In the first transition at heat-shock temperatures, a fully reversible and functionally deficient structural alteration takes place in GrpE, and then the higher temperatures lead to the irreversible dissociation of the GrpE dimer into monomers as the second transition. GrpE is also thought to be a thermosensor of the DnaK system, since it is the only member of the DnaK system that changes its structure reversibly and loses its function at heat-shock temperatures of various organisms. We here report the crystal structure of GrpE from Thermus thermophilus HB8 (GrpETth) at 3.23 Å resolution. The resolved structure is compared with that of GrpE from mesophilic Escherichia coli (GrpEEco), revealing structural similarities, particularly in the DnaK interaction regions, and structural characteristics for the thermal stability of GrpETth. In addition, the structure analysis raised the possibility that the polypeptide chain in the reported GrpEEco structure was misinterpreted. Comparison of these two GrpE structures combined with the results of limited proteolysis experiments provides insight into the protein dynamics of GrpETth correlated with the shift of temperature, and also suggests that the localized and partial unfolding at the plausible DnaK interaction sites of GrpETth causes functional deficiency of nucleotide exchange factor in response to the heat shock.  相似文献   

14.
The nuclear pore complex mediates the transport of macromolecules across the nuclear envelope (NE). The vertebrate nuclear pore protein Nup35, the ortholog of Saccharomyces cerevisiae Nup53p, is suggested to interact with the NE membrane and to be required for nuclear morphology. The highly conserved region between vertebrate Nup35 and yeast Nup53p is predicted to contain an RNA-recognition motif (RRM) domain. Due to its low level of sequence homology with other RRM domains, the RNP1 and RNP2 motifs have not been identified in its primary structure. In the present study, we solved the crystal structure of the RRM domain of mouse Nup35 at 2.7 A resolution. The Nup35 RRM domain monomer adopts the characteristic betaalphabetabetaalphabeta topology, as in other reported RRM domains. The structure allowed us to locate the atypical RNP1 and RNP2 motifs. Among the RNP motif residues, those on the beta-sheet surface are different from those of the canonical RRM domains, while those buried in the hydrophobic core are highly conserved. The RRM domain forms a homodimer in the crystal, in accordance with analytical ultracentrifugation experiments. The beta-sheet surface of the RRM domain, with its atypical RNP motifs, contributes to homodimerization mainly by hydrophobic interactions: the side-chain of Met236 in the beta4 strand of one Nup35 molecule is sandwiched by the aromatic side-chains of Phe178 in the beta1 strand and Trp209 in the beta3 strand of the other Nup35 molecule in the dimer. This structure reveals a new homodimerization mode of the RRM domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号