首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquaporin 4 (AQP4) is a water transporting, transmembrane channel protein that has important regulatory roles in maintaining cellular water homeostasis. Several other AQP proteins exhibit calmodulin (CaM)-binding properties, and CaM has recently been implicated in the cell surface localization of AQP4. The objective of the present study was to assess the CaM-binding properties of AQP4 in detail. Inspection of AQP4 revealed two putative CaM-binding domains (CBDs) in the cytoplasmic N- and C-terminal regions, respectively. The Ca2+-dependent CaM-binding properties of AQP4 CBD peptides were assessed using fluorescence spectroscopy, isothermal titration calorimetry, and two-dimensional 1H, 15N-HSQC NMR with 15N-labeled CaM. The N-terminal CBD of AQP4 predominantly interacted with the N-lobe of CaM with a 1:1 binding ratio and a Kd of 3.4 μM. The C-terminal AQP4 peptide interacted with both the C- and N-lobes of CaM (2:1 binding ratio; Kd1: 3.6 μM, Kd2: 113.6 μM, respectively). A recombinant AQP4 protein domain (recAQP4CT, containing the entire cytosolic C-terminal sequence) bound CaM in a 1:1 binding mode with a Kd of 6.1 μM. A ternary bridging complex could be generated with the N- and C-lobes of CaM interacting simultaneously with the N- and C-terminal CBD peptides. These data support a unique adapter protein binding mode for CaM with AQP4.  相似文献   

2.
Molecular understanding of bio-macromolecular binding is a challenging task due to large sizes of the molecules and presence of variety of interactions. Here, we study the molecular mechanism of calmodulin (CaM) binding to Orai1 that regulates Ca2+-dependent inactivation process in eukaryotic cells. Although experimental observations indicate that Orai1 binds to the C-terminal of Ca2+-loaded CaM, it is not decisive if N-domain of CaM interacts with Orai1. We address the issue of interaction of different domains of CaM with Orai1 using conformational thermodynamic changes, computed from histograms of dihedral angles over simulated trajectories of CaM, CaM-binding domain of Orai1 and complexes of CaM with Orai1. The changes for all residues of both C and N terminal domains of CaM upon Orai1 binding are compared. Our analysis shows that Orai1binds to both C-terminal and N-terminal domains of CaM, indicating 1:2 stoichiometry. The Orai1 binding to N-terminal domain of CaM is less stable than that to the C-terminal domain. The binding residues are primarily hydrophobic. These observations are in qualitative agreement to the experiments. The conformational thermodynamic changes thus provide a useful computational tool to provide atomic details of interactions in bio-macromolecular binding.  相似文献   

3.
The mammalian ryanodine receptor Ca2+ release channel (RyR) has a single conserved high affinity calmodulin (CaM) binding domain. However, the skeletal muscle RyR1 is activated and cardiac muscle RyR2 is inhibited by CaM at submicromolar Ca2+. This suggests isoform-specific domains are involved in RyR regulation by CaM. To gain insight into the differential regulation of cardiac and skeletal muscle RyRs by CaM, RyR1/RyR2 chimeras and mutants were expressed in HEK293 cells, and their single channel activities were measured using a lipid bilayer method. All RyR1/RyR2 chimeras and mutants were inhibited by CaM at 2 μM Ca2+, consistent with CaM inhibition of RyR1 and RyR2 at micromolar Ca2+ concentrations. An RyR1/RyR2 chimera with RyR1 N-terminal amino acid residues (aa) 1–3725 and RyR2 C-terminal aa 3692–4968 were inhibited by CaM at <1 μM Ca2+ similar to RyR2. In contrast, RyR1/RyR2 chimera with RyR1 aa 1–4301 and RyR2 4254–4968 was activated at <1 μM Ca2+ similar to RyR1. Replacement of RyR1 aa 3726–4298 with corresponding residues from RyR2 conferred CaM inhibition at <1 μM Ca2+, which suggests RyR1 aa 3726–4298 are required for activation by CaM. Characterization of additional RyR1/RyR2 chimeras and mutants in two predicted Ca2+ binding motifs in RyR1 aa 4081–4092 (EF1) and aa 4116–4127 (EF2) suggests that both EF-hand motifs and additional sequences in the large N-terminal regions are required for isoform-specific RyR1 and RyR2 regulation by CaM at submicromolar Ca2+ concentrations.  相似文献   

4.
The ubiquitous mammalian Na+/H+ exchanger NHE1 has critical functions in regulating intracellular pH, salt concentration, and cellular volume. The regulatory C-terminal domain of NHE1 is linked to the ion-translocating N-terminal membrane domain and acts as a scaffold for signaling complexes. A major interaction partner is calmodulin (CaM), which binds to two neighboring regions of NHE1 in a strongly Ca2+-dependent manner. Upon CaM binding, NHE1 is activated by a shift in sensitivity toward alkaline intracellular pH. Here we report the 2.23 Å crystal structure of the NHE1 CaM binding region (NHE1CaMBR) in complex with CaM and Ca2+. The C- and N-lobes of CaM bind the first and second helix of NHE1CaMBR, respectively. Both the NHE1 helices and the Ca2+-bound CaM are elongated, as confirmed by small angle x-ray scattering analysis. Our x-ray structure sheds new light on the molecular mechanisms of the phosphorylation-dependent regulation of NHE1 and enables us to propose a model of how Ca2+ regulates NHE1 activity.  相似文献   

5.
Jang DJ  Ban B  Lee JA 《Molecules and cells》2011,32(6):511-518
IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7–3) and IQ(3.5–4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7–3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5–4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7–3) was the main apoCaM binding domain and both IQ(2.7–3) and IQ(3.5–4.4) were required for Ca2+/CaM binding within IQ(1-2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner.  相似文献   

6.
Glucosamine-6-phosphate synthase (GlmS) channels ammonia from glutamine at the glutaminase site to fructose 6-phosphate (Fru6P) at the synthase site. Escherichia coli GlmS is composed of two C-terminal synthase domains that form the dimer interface and two N-terminal glutaminase domains at its periphery. We report the crystal structures of GlmS alone and in complex with the glucosamine-6-phosphate product at 2.95 Å and 2.9 Å resolution, respectively. Surprisingly, although the whole protein is present in this crystal form, no electron density for the glutaminase domain was observed, indicating its mobility. Comparison of the two structures with that of the previously reported GlmS-Fru6P complex shows that, upon sugar binding, the C-terminal loop, which forms the major part of the channel walls, becomes ordered and covers the synthase site. The ordering of the glutaminase domains likely follows Fru6P binding by the anchoring of Trp74, which acts as the gate of the channel, on the closed C-terminal loop. This is accompanied by a major conformational change of the side chain of Lys503# of the neighboring synthase domain that strengthens the interactions of the synthase domain with the C-terminal loop and completely shields the synthase site. The concomitant conformational change of the Lys503#-Gly505# tripeptide places catalytic His504# in the proper position to open the sugar and buries the linear sugar, which is now in the vicinity of the catalytic groups involved in the sugar isomerization reaction. Together with the previously reported structures of GlmS in complex with Fru6P or glucose 6-phosphate and a glutamine analogue, the new structures reveal the structural changes occurring during the whole catalytic cycle.  相似文献   

7.
Membrane skeletal protein 4.1R80 plays a key role in regulation of erythrocyte plasticity. Protein 4.1R80 interactions with transmembrane proteins, such as glycophorin C (GPC), are regulated by Ca2+-saturated calmodulin (Ca2+/CaM) through simultaneous binding to a short peptide (pep11; A264KKLWKVCVEHHTFFRL) and a serine residue (Ser185), both located in the N-terminal 30 kDa FERM domain of 4.1R80 (H·R30). We have previously demonstrated that CaM binding to H·R30 is Ca2+-independent and that CaM binding to H·R30 is responsible for the maintenance of H·R30 β-sheet structure. However, the mechanisms responsible for the regulation of CaM binding to H·R30 are still unknown. To investigate this, we took advantage of similarities and differences in the structure of Coracle, the Drosophila sp. homologue of human 4.1R80, i.e. conservation of the pep11 sequence but substitution of the Ser185 residue with an alanine residue. We show that the H·R30 homologue domain of Coracle, Cor30, also binds to CaM in a Ca2+-independent manner and that the Ca2+/CaM complex does not affect Cor30 binding to the transmembrane protein GPC. We also document that both H·R30 and Cor30 bind to phosphatidylinositol-4,5 bisphosphate (PIP2) and other phospholipid species and that that PIP2 inhibits Ca2+-free CaM but not Ca2+-saturated CaM binding to Cor30. We conclude that PIP2 may play an important role as a modulator of apo-CaM binding to 4.1R80 throughout evolution.  相似文献   

8.
9.
Scaffolding proteins are molecular switches that control diverse signaling events. The scaffolding protein Na+/H+ exchanger regulatory factor 1 (NHERF1) assembles macromolecular signaling complexes and regulates the macromolecular assembly, localization, and intracellular trafficking of a number of membrane ion transport proteins, receptors, and adhesion/antiadhesion proteins. NHERF1 begins with two modular protein-protein interaction domains—PDZ1 and PDZ2—and ends with a C-terminal (CT) domain. This CT domain binds to ezrin, which, in turn, interacts with cytosekeletal actin. Remarkably, ezrin binding to NHERF1 increases the binding capabilities of both PDZ domains. Here, we use deuterium labeling and contrast variation neutron-scattering experiments to determine the conformational changes in NHERF1 when it forms a complex with ezrin. Upon binding to ezrin, NHERF1 undergoes significant conformational changes in the region linking PDZ2 and its CT ezrin-binding domain, as well as in the region linking PDZ1 and PDZ2, involving very long range interactions over 120 Å. The results provide a structural explanation, at mesoscopic scales, of the allosteric control of NHERF1 by ezrin as it assembles protein complexes. Because of the essential roles of NHERF1 and ezrin in intracellular trafficking in epithelial cells, we hypothesize that this long-range allosteric regulation of NHERF1 by ezrin enables the membrane-cytoskeleton to assemble protein complexes that control cross-talk and regulate the strength and duration of signaling.  相似文献   

10.
Several crystal structures of AFL, a novel lipase from the archaeon Archaeoglobus fulgidus, complexed with various ligands, have been determined at about 1.8 Å resolution. This enzyme has optimal activity in the temperature range of 70-90 °C and pH 10-11. AFL consists of an N-terminal α/β-hydrolase fold domain, a small lid domain, and a C-terminal β-barrel domain. The N-terminal catalytic domain consists of a 6-stranded β-sheet flanked by seven α-helices, four on one side and three on the other side. The C-terminal lipid binding domain consists of a β-sheet of 14 strands and a substrate covering motif on top of the highly hydrophobic substrate binding site. The catalytic triad residues (Ser136, Asp163, and His210) and the residues forming the oxyanion hole (Leu31 and Met137) are in positions similar to those of other lipases. Long-chain lipid is located across the two domains in the AFL-substrate complex. Structural comparison of the catalytic domain of AFL with a homologous lipase from Bacillus subtilis reveals an opposite substrate binding orientation in the two enzymes. AFL has a higher preference toward long-chain substrates whose binding site is provided by a hydrophobic tunnel in the C-terminal domain. The unusually large interacting surface area between the two domains may contribute to thermostability of the enzyme. Two amino acids, Asp61 and Lys101, are identified as hinge residues regulating movement of the lid domain. The hydrogen-bonding pattern associated with these two residues is pH dependent, which may account for the optimal enzyme activity at high pH. Further engineering of this novel lipase with high temperature and alkaline stability will find its use in industrial applications.  相似文献   

11.
The nucleotide sequences of cDNAs encoding two isoforms of Arabidopsis glutamate decarboxylase, designated GAD1 (57.1 kDa) and GAD2 (56.1 kDa) and sharing 82% identical amino acid sequences, were determined. The recombinant proteins bound [35S] calmodulin (CaM) in the presence of calcium, and a region of 30–32 amino acids from the C-terminal of each isoform was sufficient for CaM binding when fused to glutathione S-transferase. Full-length GAD1 and GAD2 were expressed in Sf9 insect cells infected with recombinant baculovirus vectors. Recombinant proteins were partially purified by CaM affinity chromatography and were found to exhibit glutamate decarboxylase activity, which was dependent on the presence of Ca2+/CaM at pH 7.3. Southern hybridizations with GAD gene-specific probes suggest that Arabidopsis possesses one gene related to GAD1 and one to GAD2. Northern hybridization and western blot analysis revealed that GAD1 was expressed only in roots and GAD2 in roots, leaves, inflorescence stems and flowers. Our study provides the first evidence for the occurrence of multiple functional Ca2+/CaM-regulated GAD gene products in a single plant, suggesting that regulation of Arabidopsis GAD activity involves modulation of isoform-specific gene expression and stimulation of the catalytic activity of GAD by calcium signalling via CaM.  相似文献   

12.
13.
Calmodulin (CaM) binds to a domain near the C-terminus of the plasma membrane Ca2+-ATPase (PMCA), causing the release of this domain and relief of its autoinhibitory function. We investigated the kinetics of dissociation and binding of Ca2+-CaM with a 28-residue peptide [C28W(1b)] corresponding to the CaM-binding domain of isoform 1b of PMCA. CaM was labeled with a fluorescent probe on either the N-terminal domain at residue 34 or the C-terminal domain at residue 110. Formation of complexes of CaM with C28W(1b) results in a decrease in the fluorescence yield of the fluorophore, allowing the kinetics of dissociation or binding to be detected. Using a maximum entropy method, we determined the minimum number and magnitudes of rate constants required to fit the data. Comparison of the fluorescence changes for CaM labeled on the C-terminal or N-terminal domain suggests sequential and ordered binding of the C-terminal and N-terminal domains of CaM with C28W(1b). For dissociation of C28W(1b) from CaM labeled on the N-terminal domain, we observed three time constants, indicating the presence of two intermediate states in the dissociation pathway. However, for CaM labeled on the C-terminal domain, we observed only two time constants, suggesting that the fluorescence label on the C-terminal domain was not sensitive to one of the kinetic steps. The results were modeled by a kinetic mechanism in which an initial complex forms upon binding of the C-terminal domain of CaM to C28W(1b), followed by binding of the N-terminal domain, and then formation of a tight binding complex. Oxidation of methionine residues in CaM resulted in significant perturbations to the binding kinetics. The rate of formation of a tight binding complex was reduced, consistent with the poorer effectiveness of oxidized CaM in activating the Ca2+ pump.  相似文献   

14.
Calmodulin (CaM) is a ubiquitous second messenger protein that regulates a variety of structurally and functionally diverse targets in response to changes in Ca2+ concentration. CaM-dependent protein kinase II (CaMKII) and calcineurin (CaN) are the prominent CaM targets that play an opposing role in many cellular functions including synaptic regulation. Since CaMKII and CaN compete for the available Ca2+/CaM, the differential affinity of these enzymes for CaM is crucial for achieving a balance in Ca2+ signaling. We used the computational protein design approach to modify CaM binding specificity for these two targets. Starting from the X-ray structure of CaM in complex with the CaM-binding domain of CaMKII, we optimized CaM interactions with CaMKII by introducing mutations into the CaM sequence. CaM optimization was performed with a protein design program, ORBIT, using a modified energy function that emphasized intermolecular interactions in the sequence selection procedure. Several CaM variants were experimentally constructed and tested for binding to the CaMKII and CaN peptides using the surface plasmon resonance technique. Most of our CaM mutants demonstrated small increase in affinity for the CaMKII peptide and substantial decrease in affinity for the CaN peptide compared to that of wild-type CaM. Our best CaM design exhibited an about 900-fold increase in binding specificity towards the CaMKII peptide, becoming the highest specificity switch achieved in any protein-protein interface through the computational protein design approach. Our results show that computational redesign of protein-protein interfaces becomes a reliable method for altering protein binding affinity and specificity.  相似文献   

15.
VERNALIZATION1 (VRN1) is a multidomain DNA binding protein from Arabidopsis thaliana that is required for the acceleration of flowering time in response to prolonged cold treatment; a physiological process called vernalization. VRN1 is a 39 kDa protein comprised of two B3 domains flanking a putative nuclear localization sequence and two PEST domains. Here we report the 1H, 13C and 15N resonance assignments of the 134 residue C-terminal region of VRN1, comprising a B3 DNA binding domain of the REM family and an upstream region that is highly conserved among VRN1 homologs from other dicotyledonous plant species.  相似文献   

16.
Calmodulin (CaM) is a primary calcium (Ca2+)‐signaling protein that specifically recognizes and activates highly diverse target proteins. We explored the molecular basis of target recognition of CaM with peptides representing the CaM‐binding domains from two Ca2+‐CaM‐dependent kinases, CaMKI and CaMKII, by employing experimentally constrained molecular simulations. Detailed binding route analysis revealed that the two CaM target peptides, although similar in length and net charge, follow distinct routes that lead to a higher binding frustration in the CaM–CaMKII complex than in the CaM–CaMKI complex. We discovered that the molecular origin of the binding frustration is caused by intermolecular contacts formed with the C‐domain of CaM that need to be broken before the formation of intermolecular contacts with the N‐domain of CaM. We argue that the binding frustration is important for determining the kinetics of the recognition process of proteins involving large structural fluctuations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
O'Donnell SE  Yu L  Fowler CA  Shea MA 《Proteins》2011,79(3):765-786
Calcineurin (CaN, PP2B, PPP3), a heterodimeric Ca2+‐calmodulin‐dependent Ser/Thr phosphatase, regulates swimming in Paramecia, stress responses in yeast, and T‐cell activation and cardiac hypertrophy in humans. Calcium binding to CaNB (the regulatory subunit) triggers conformational change in CaNA (the catalytic subunit). Two isoforms of CaNA (α, β) are both abundant in brain and heart and activated by calcium‐saturated calmodulin (CaM). The individual contribution of each domain of CaM to regulation of calcineurin is not known. Hydrodynamic analyses of (Ca2+)4‐CaM1–148 bound to βCaNp, a peptide representing its CaM‐binding domain, indicated a 1:1 stoichiometry. βCaNp binding to CaM increased the affinity of calcium for the N‐ and C‐domains equally, thus preserving intrinsic domain differences, and the preference of calcium for sites III and IV. The equilibrium constants for individual calcium‐saturated CaM domains dissociating from βCaNp were ~1 μM. A limiting Kd ≤ 1 nM was measured directly for full‐length CaM, while thermodynamic linkage analysis indicated that it was approximately 1 pM. βCaNp binding to 15N‐(Ca2+)4‐CaM1–148 monitored by 15N/1HN HSQC NMR showed that association perturbed the N‐domain of CaM more than its C‐domain. NMR resonance assignments of CaM and βCaNp, and interpretation of intermolecular NOEs observed in the 13C‐edited and 12C‐14N‐filtered 3D NOESY spectrum indicated anti‐parallel binding. The sole aromatic residue (Phe) located near the βCaNp C‐terminus was in close contact with several residues of the N‐domain of CaM outside the hydrophobic cleft. These structural and thermodynamic properties would permit the domains of CaM to have distinct physiological roles in regulating activation of βCaN. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
CyrA is a novel cysteine-rich protein with four EGFL repeats that was isolated using the calmodulin (CaM) binding overlay technique (CaMBOT), suggesting it is a CaM-binding protein (CaMBP). The full-length 63 kDa cyrA is cleaved into two major C-terminal fragments, cyrA-C45 and cyrA-C40. A putative CaM-binding domain was detected and both CaM-agarose binding and CaM immunoprecipitation verified that cyrA-C45 and cyrA-C40 each bind to CaM in both a Ca2+-dependent and -independent manner. cyrA-C45 was present continuously throughout growth and development but was secreted at high levels during the multicellular slug stage of Dictyostelium development. At this time, cyrA localizes to the extracellular matrix (ECM). ECM purification verified the presence of cyrA-C45. An 18 amino acid peptide (DdEGFL1) from the first EGFL repeat sequence of cyrA (EGFL1) that is present in both cyrA-C45 and -C40 enhances both random cell motility and cAMP-mediated chemotaxis. Here we reveal that the dose-dependent enhancement of motility by DdEGFL1 is related to the time of cell starvation. Addition of DdEGFL1 also inhibits cyrA proteolysis. The status of cyrA as an extracellular CaMBP was further clarified by the demonstration that CaM is secreted during development. Antagonism of CaM with W7 resulted in enhanced cyrA proteolysis suggesting a functional role for extracellular CaM in protecting CaMBPs from proteolysis. cyrA is the first extracellular CaMBP identified in Dictyostelium and since it is an ECM protein with EGF-like repeats that enhance cell motility and it likely also represents the first matricellular protein identified in a lower eukaryote.  相似文献   

19.
Ca2+ (calcium) homoeostasis and signalling rely on physical contacts between Ca2+ sensors in the ER (endoplasmic reticulum) and Ca2+ channels in the PM (plasma membrane). STIM1 (stromal interaction molecule 1) and STIM2 Ca2+ sensors oligomerize upon Ca2+ depletion in the ER lumen, contact phosphoinositides at the PM via their cytosolic lysine (K)-rich domains, and activate Ca2+ channels. Differential sensitivities of STIM1 and STIM2 towards ER luminal Ca2+ have been studied but responses towards elevated cytosolic Ca2+ concentration and the mechanism of lipid binding remain unclear. We found that tetramerization of the STIM1 K-rich domain is necessary for efficient binding to PI(4,5)P2-containing PM-like liposomes consistent with an oligomerization-driven STIM1 activation. In contrast, dimerization of STIM2 K-rich domain was sufficient for lipid binding. Furthermore, the K-rich domain of STIM2, but not of STIM1, forms an amphipathic α-helix. These distinct features of the STIM2 K-rich domain cause an increased affinity for PI(4,5)P2, consistent with the lower activation threshold of STIM2 and a function as regulator of basal Ca2+ levels. Concomitant with higher affinity for PM lipids, binding of CaM (calmodulin) inhibited the interaction of the STIM2 K-rich domain with liposomes in a Ca2+ and PI(4,5)P2 concentration-dependent manner. Therefore we suggest that elevated cytosolic Ca2+ concentration down-regulates STIM2-mediated ER–PM contacts via CaM binding.  相似文献   

20.
Superoxide generated by NADPH Oxidase 5 (Nox5) is regulated by Ca2+ through the interaction of its self-contained Ca2+ binding domain and dehydrogenase domain (DH). Recently, calmodulin (CaM) has been reported to enhance the Ca2+ sensitivity of Nox5 by binding to the CaM-binding domain sequence (CMBD), in which the interaction between CaM and Nox5 is largely unclear. Here, we used the CMBD peptide and truncated DH constructs, and separately studied their interaction with CaM by fluorescence, calorimetry, and dynamic light scattering. Our results revealed that each half-domain of CaM binds one CMBD peptide with a binding constant near 106 M-1 and a binding enthalpy change of ?3.81 kcal/mol, consistent with an extended 1:2 CaM:CMBD structure. However, the recombinant truncated DH proteins exist as oligomers, possibly trimer and tetramer. The oligomeric states are concentration and salt dependent. CaM binding appears to stabilize the DH dimer complexed with CaM. The thermodynamics of CaM binding to the DH is comparable to the peptide-based study except that the near unity binding stoichiometry and a large conformational change were observed. Our result suggests that the oligomeric states of Nox5, mediated by its DH domain and CaM, may be important for its superoxide-generating activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号