首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The intergeniculate leaflet of the lateral geniculate nucleus is considered to modulate circadian activity rhythms probably mediated by a direct neuronal connection to the suprachiasmatic nucleus. The present study in the gerbil demonstrates, by anterograde tracing with Phaseolus vulgaris-leucoagglutinin (PHA-L), the existence of an additional neuronal projection from a subportion of the lateral geniculate nucleus, involving the intergeniculate leaflet, directly to the pineal gland. PHA-L-immunoreactive nerve fibers originating from perikarya at the injection site were located under the optic tract projecting towards the midsagittal plane. Delicate PHA-L-immunoreactive nerve fibers were observed in the posterior paraventricular thalamic nucleus, precommissural nucleus, olivary pretectal nucleus, anterior and posterior pretectal nuclei, and posterior commissure. Single fibers could be followed from the caudal part of the medial habenular nucleus and the pretectal area into the rostral part of the deep pineal gland. Other fibers continued through the posterior commissure into the contralateral hemisphere to terminate in the same structures as on the ipsilateral side. From the posterior commissure, small bundles of thick fibers entered the deep pineal gland where they arborized among the endocrine cells. A few nerve fibers were observed in the habenular commissure and the pineal stalk, but no fibers were identified in the superficial pineal. This direct geniculo-pineal connection suggests that the pineal gland is directly influenced by the optic system.  相似文献   

2.
Summary In the hypothalamus of the turtle, Lissemys punctata granosa, two magnocellular and 23 parvocellular neuronal complexes can be distinguished. The magnocellular complexes include the nucleus supraopticus and the nucleus paraventricularis; paraventricular neurons are partly arranged in rows parallel to the third ventricle. Most infundibular parvocellular nuclei display neurons disposed in rows parallel to the ventricular surface. In the preoptic region, the prominent parvocellular neuronal complexes encompass the nucleus periventricularis anterior, lateral preoptic area, the nucleus of the anterior commissure and the nucleus suprachiasmaticus. The prominent nucleus periventricularis posterior extends caudad and shows neurons arranged in vertical rows parallel to the third ventricle. Other parvocellular nuclei of the rostral hypothalamus are composed of clustered subunits. The nucleus arcuatus is a fairly large nuclear entity extending from the level marked dorsally by the nucleus paraventricularis to the area occupied by the nucleus of the paraventricular organ. A well-developed ventromedial nucleus is located ventrolateral to the paraventricular organ. The prominent paraventricular organ consists of tightly arranged neurons, some of which possess apical projections into the third ventricle; it is surrounded by the nucleus of the paraventricular organ. Nucleus hypothalamicus medialis et lateralis, nucleus hypothalamicus posterior and the nuclei recessus infundibuli are further nuclear units of the tuberal region. The caudal end of the hypothalamus is marked by the nucleus mamillaris; its neurons are scattered among the fibers of the retroinfundibular commissure. The median eminence is well developed and shows a large medial and two lateral protrusions into the infundibular recess.  相似文献   

3.
Summary Retinopetal neurons were visualised in the telencephalon and diencephalon of an air-breathing teleost fish, Channa punctata, following administration of cobaltous lysine to the optic nerve. The labelled perikarya (n=45–50) were always located on the side contralateral to the optic nerve that had received the neuronal tracer. The rostral-most back-filled cell bodies were located in the nucleus olfactoretinalis at the junction between the olfactory bulb and the telencephalon. In the area ventralis telencephali, two groups of telencephaloretinopetal neurons were identified near the ventral margin of the telencephalon. The rostral hypothalamus exhibited retrogradely labelled cells in three discrete areas of the lateral preoptic area, which was bordered medially by the nucleus praeopticus periventricularis and nucleus praeopticus, and laterally by the lateral forebrain bundle. In addition to a dorsal and a ventral group, a third population of neurons was located ventral to the lateral forebrain bundle adjacent to the optic tract. The dorsal group of neurons exhibited extensive collaterals; a few extended laterally towards the lateral forebrain bundle, whereas others ran into the dorsocentral area of the area dorsalis telencephali. A few processes extended via the anterior commissure into the telencephalon ipsilateral to the optic nerve that had been exposed to cobaltous lysine. However, the ventral cell group did not possess collaterals. In the diencephalon, retinopetal cells were visualised in the nucleus opticus dorsolateralis located in the pretectal area; these were the largest retinopetal perikarya of the brain. The caudal-most nucleus that possessed labelled somata was the retinothalamic nucleus; it contained the largest number of retinopetal cells. The limited number of widely distributed neurons in the forebrain, some with extensive collaterals, might participate in functional integration of different brain areas involved in feeding, which in this species is influenced largely by taste, not solely by vision.  相似文献   

4.
Summary We have investigated the central connections of the classical olfactory system in the weakly electric fish Gnathonemus petersii using HRP and cobalt labelling techniques. The olfactory bulb projects bilaterally via the medial and lateral olfactory tracts to restricted areas of the telencephalon, namely to its rostromedial, lateral and posterior medial parts. The most extensive telencephalic target is the posterior terminal field, which arcs around the lateral forebrain bundle at levels posterior to the anterior commissure. Projections to the contralateral hemisphere cross in the ventral telencephalon rostral to the anterior commissure and via the posterior dorsal part of the anterior commissure; endings are also present within the anterior commissure. Bilateral projections to the preoptic area, to the nucleus posterior tuberis and to an area in the thalamus are apparent. In all cases, contralateral projections are less extensive than those on the side ipsilateral to the injected bulb. A projection via the medial olfactory tract can be followed to the contralateral bulb. Following injections into the olfactory bulb, retrogradely labelled neurons are found in the contralateral bulb and in six telencephalic areas; they are also present in the periventricular diencephalon and in an area lateral to the nucleus posterior tuberis. The present results support the suggestion that a reduction in olfactory input to the telencephalon occurs together with increased telencephalic differentiation in actinopterygian fishes.  相似文献   

5.
Summary The chemical composition of intermediate filaments (IF's) in the ependyma of the subcommissural organ (SCO) of the Mongolian gerbil (Meriones unguiculatus) was investigated immunohistochemically in paraffin-embedded tissue. Antibodies against glial fibrillary acidic protein (GFAP), vimentin, neurofilament proteins and cytokeratins were used. Only GFAP and vimentin were detected in the non-specialized diencephalic ependyma and in the ependymocytes of the SCO. Staining could be observed in apical and basal processes of the SCO-cells. The latter processes extended into the posterior commissure up to the subpial surface, thus establishing a well-developed leptomeningeal route of ependymal projections. In contrast to the homogeneous vimentin-labeling, the SCO was particularly immunoreactive for GFAP in its lateral aspects and in the supraand precommissural parts. The coexpression of GFAP and vimentin in a subclass of SCO-ependymocytes was demonstrated on differentially immunostained semithin sections. The present study confirms the glial nature of the SCO-ependyma, which has been a matter of debate recently. It appears from this investigation that the high degree of secretory activity in the SCO does not necessarily lead to the disappearance of glial IF proteins. Moreover, the SCO-cells belong to the expanding group of mature astroglia, which is characterized by coexpression of GFAP and vimentin. The morphological similarity between SCO-ependymocytes and tanycytes is underscored by their common immunoreactivity against these two IF proteins. In view of the absence of GFAP from the rat SCO, interspecific differences must be considered in the evaluation of the IF protein composition.  相似文献   

6.
Summary The hypothalamus of the crocodile, Gavialis gangeticus, was investigated to reveal the organization of various nuclear complexes and to suggest homologies. The hypothalamic nuclei of G. gangeticus are composed of magnocellular and parvocellular neuronal entities. In the magnocellular system the nucleus supraopticus is well developed, whereas the nucleus paraventricularis and nucleus retrochiasmaticus are represented by scattered somata. Application of cytoarchitectonic criteria permits the delineation of 24 distinct parvocellular nuclear complexes extending rostrocaudally from the anterior commissure to the level indicated by the median eminence and nucleus mamillaris; some are further divisible into subgroups. The nucleus of the preoptic recess appears to be a unique property of the crocodilian hypothalamus. The nucleus suprachiasmaticus possesses a wing-like ventrolateral expansion that protrudes along the lateral aspect of the optic nerve. The tuberal region displays an elaborate pattern of nuclei segregated by regional specializations of the neuropil. The nucleus hypothalamicus posterior occupies the periventricular zone, flanked laterally by the nucleus hypothalamicus dorsomedialis and nucleus arcuatus. Further laterally, extended subdivisions of the nucleus hypothalamicus lateralis contain neurons rich in Nissl substance; the specializations shown by these subdivisions, in comparison to the lateral cell groups in lizards and snakes, are suggestive of enhanced integrative functions. The conspicuous paraventricular organ is encircled by dorsal and ventral divisions of the nucleus of the paraventricular organ. The neurons of the nucleus subfornicalis and nucleus hypothalamicus medialis are few in number, but large in size. The general organization of the hypothalamus of G. gangeticus reveals a mosaic-like pattern with the constituent groups appearing as clusters of small and large neurons, arranged medially and laterally in a definitive manner and accompanied by extensive zones of neuropil in the subependymal and lateral zones of the hypothalamus. The median eminence is divisible into an anterior and a posterior region. The nuclear pattern in the crocodilian hypothalamus reveals a higher state of morphologic organization compared to the situation in lizards or snakes, and thus reflects an evolutionary trend in the avian direction.  相似文献   

7.
Summary The central projections of the pineal complex of the silver lamprey Ichthyomyzon unicuspis were studied by injection of horseradish peroxidase. The pineal tract courses caudally along the left side of the habenular commissure, and a few fibers penetrate the brain through the caudalmost portion of this commissure. Most of the fibers, however, continue caudally and enter the brain through the posterior commissure. The pineal tract projects bilaterally to the subcomissural organ, the superficial and periventricular pretectum, the posterior tubercular nucleus, the dorsal and ventral thalamus, the dorsal hypothalamus, the optic tectum, the torus semicircularis, the midbrain tegmentum, and the oculomotor nucleus. A few fibers decussate in the tubercular commissure, but the course of these decussate fibers could not be followed owing to the bilateral nature of the projections. No retrogradely labeled cells were found in the brain. With the exception of the projections to the optic tectum and torus semicircularis, the pineal projections in the silver lamprey are similar to those reported in other anamniote vertebrates.  相似文献   

8.
Summary The central connections of the goldfish olfactory bulb were studied with the use of horseradish peroxidase methods. The olfactory bulb projects bilaterally to ventral and dorsolateral areas of the telencephalon; further targets include the nucleus praeopticus periventricularis and a caudal olfactory nucleus near the nucleus posterior tuberis in the diencephalon, bilaterally. The contralateral bulb and the anterior commissure also receive an input from the olfactory bulb. Contralateral projections cross in rostral and caudal portions of the anterior commissure and in the habenular commissure. Retrogradely labeled neurons are found in the contralateral bulb and in three nuclei in the telencephalon bilaterally; the neurons projecting to the olfactory bulb are far more numerous on the ipsilateral side than in the contralateral hemisphere. Afferents to the olfactory bulb are found to run almost entirely through the lateral part of the medial olfactory tract, while the bulb efferents are mediated by the medial part of the medial olfactory tract and the lateral olfactory tract. Selective tracing of olfactory sub-tracts reveals different pathways and targets of the three major tract components. Reciprocal connections between olfactory bulb and posterior terminal field suggest a laminated structure in the dorsolateral telencephalon.  相似文献   

9.
Summary The anatomical distribution of neurons and nerve fibers containing corticotropin-releasing factor (CRF) has been studied in the brain of the snake, Natrix maura, by means of immunocytochemistry using an antiserum against rat CRF. To test the possible coexistence of CRF with the neurohypophysial peptides arginine vasotocin (AVT) and mesotocin (MST) adjacent sections were stained with antisera against the two latter peptides. CRF-immunoreactive (CRF-IR) neurons exist in the paraventricular nucleus (PVN). In some neurons of the PVN, coexistence of CRF with MST or of CRF with AVT has been shown. Numerous CRF-IR fibers run along the hypothalamo-hypophysial tract and end in the outer layer of the median eminence. In addition, some fibers reach the neural lobe of the hypophysis. CRF-IR perikarya have also been identified in the following locations: dorsal cortex, nucleus accumbens, amygdala, subfornical organ, lamina terminalis, nucleus of the paraventricular organ, nucleus of the oculomotor nerve, nucleus of the trigeminal nerve, and reticular formation. In addition to all these locations CRF-IR fibers were also observed in the lateral septum, supraoptic nucleus, habenula, lateral forebrain bundle, paraventricular organ, hypothalamic ventromedial nucleus, raphe and interpeduncular nuclei.  相似文献   

10.
The brain’s biological clock, located in the suprachiasmatic nucleus (SCN), is synchronised with the cyclic environment by photic and non-photic cues. Photic information to the SCN is mediated by pituitary adenylate-cyclase-activating polypeptide (PACAP)-containing retinal ganglion cells (RGCs), whereas non-photic input originates primarily from neuropeptide Y (NPY) cells in the ipsilateral thalamic intergeniculate leaflet (IGL). RGCs also seem to project to the IGL, indicating a role for this structure in the integration of photic and non-photic inputs related to the resetting of the biological clock. In the present study, we have used anterograde tracing from both eyes, bilateral eye enucleation, double-immunofluorescence histochemistry, high-resolution confocal laser scanning microscopy and three-dimensional computer analysis to show that (1) PACAP-containing RGCs project to the IGL and are the only source for the PACAP-immunoreactive fibres in the IGL; (2) a few NPY-containing neurons in the IGL are innervated by PACAP-containing retinal nerve fibres and the contacts are both axodendritic and axosomatic; (3) most enkephalin-immunoreactive neurons in the IGL are innervated by PACAP-containing retinal afferents and the contacts are mainly axodendritic; (4) light stimulation at various time points activates (as evidenced by c-Fos induction) enkephalin-positive neurons but not NPY-immunoreactive neurons. The findings suggest that PACAP-immunoreactive retinal afferents in the IGL primarily innervate enkephalin-immunoactive neurons and that the enkephalin-containing neurons, which project locally and to the contralateral IGL, are activated by light independent of diurnal time. This study was supported by the Danish Biotechnology Centre for Cellular Communication and The Danish Medical Research Council (no. 22-04-0667).  相似文献   

11.
The distribution of cells immunoreactive for the molluscan tetrapeptide FMRFamide in the brain and the pituitary of Eigenmannia was investigated immunohistochemically by the use of the peroxidase-antiperoxidase (PAP) technique and unlabelled antibodies. FMRFi neurons were located in the ganglion of the nervus terminalis at the rostroventral side of the bulbus olfactorius. FMRFi perikarya were also found in a dorsomedial diencephalic nucleus, in the nucleus ventromedialis, in some liquor-contacting neurons of the nucleus lateralis tuberis and of the nucleus recessus lateralis and posterior. The perikarya of the midbrain pre-pacemaker nucleus were only weakly immunoreactive for FMRFamide while large FMRFi neurons (T-cells) occurred in lamina VI of the torus semicircularis, in the brain stem, in dorsal and medial layers of the lobus lineae lateralis posterior (LLLp) and in the medullary electric organ pacemaker nucleus (pm). FMRFi fibers and nerve endings were found in the bulbus olfactorius, in medial areas of the telencephalon, and rather densely in the rostral diencephalon. Ventrocaudally to most of the hypothalamic nuclei the occurrence of immunoreactive fibres increased; many coursed to the pituitary through the pituitary stalk. FMRFi fibres also appeared in the deep layers of the tectum opticum, in the torus semicircularis, in the medial and lateral medulla and below the pacemaker nucleus. Wherever FMRFamide-immunoreactivity occurred fibres and nerve endings could be found in close contact with blood vessels.  相似文献   

12.
Summary The pineal complex of the teleost, Phoxinus phoxinus L., was studied light-microscopically by the use of the indirect immunocytochemical antiopsin reaction and the histochemical acetylcholinersterase (AChE) method.Opsin-immunoreactive outer segments of photoreceptor cells were demonstrated in large numbers in all divisions of the pineal end-vesicle and in the pineal stalk. Moreover, they were found in the roof of the third ventricle, adjacent to the orifice of the pineal recess as well as scattered in the parapineal organ. These immunocytochemical observations provide direct evidence of the presence of an opsin associated with a photopigment in the photosensory cells of the pineal and parapineal organs of Phoxinus. By means of the AChE reaction (Karnovsky and Roots 1964) inner segments of pineal photoreceptors, intrinsic nerve cells, several intrapineal bundles of nerve fibers, and a prominent pineal tract were specifically marked. The pineal neurons can be divided into two types: one is located near the pineal lumen, the other near the basal lamina. The latter perikarya bear stained processes directed toward the photoreceptor layer. A rostral aggregation of two types of AChE-positive nerve cells occurs in the ventral wall of the pineal end-vesicle. The main portion of the AChE-positive pineal tract, which lies within the dorsal wall of the pineal stalk, can be followed to the posterior commissure where some of the nerve fibers course laterally. A few AChE-positive pineal nerve fibers run toward the lateral habenular nucleus via the habenular commissure. In the region of the subcommissural organ single AChE-positive neurons accompany the pineal tract. The nerve cells of the parapineal organ exhibit a moderate AChE activity.These findings extend the structural basis for the remarkable light-dependent activity of the pineal organ of Phoxinus phoxinus. To the memory of Professor Karl von Frisch, pioneer and master in the field of photoneuroendocrine systemsThis investigation was supported by grants from the Deutsche Forschungsgemeinschaft to A.O. (Ok 1/24; 1/25: Mechanismen biologischer Uhren) and to H.-W. K. (Ko 758/1; 758–2)On leave from the 2nd Department of Anatomy, SOTE, Budapest, Hungary  相似文献   

13.
Summary Central pathways of the nervus terminalis (n.t.) in the bichir, Polypterus palmas, were studied with the use of tracing techniques. After application of horseradish peroxidase to the unilateral olfactory mucosa labeled n.t. fibers were traced in seven distinct bundles through the subpallium. Projection areas are found in the precommissural ventral nucleus of the area ventralis telencephali ipsilaterally, the anterior commissure and commissural parts of the periventricular preoptic nucleus bilaterally; few n.t.-fibers cross via the anterior commissure to the contralateral side; no fibers were observed to turn rostrally to the contralateral olfactory bulb. Major targets of the n.t. include a restricted ventral part of the periventricular preoptic nucleus at the level of the optic chiasma bilaterally, and the periventricular nuclei located between the thalamic nuclei and the hypothalamus bilaterally. N.t. fibers continue their course through the ipsilateral hypothalamus and are traced as far as the mesencephalic tegmentum ipsilaterally. N.t. terminations are found consistently within the boundaries of periventricular cell nuclei, suggesting axosomatic synaptic contacts. We propose a differentiation of the n.t. ganglion cells into a distal (mucosal) and proximal (bulbar) type regarding the peripheral cell processes. Our findings are compared with those of other reports on the n.t. system.  相似文献   

14.
Summary 150–190 photoreceptor cells form a basic structural component of the pineal organ of Ambystoma tigrinum. Most of the outer and inner segments of these cells project into the lumen horizontally. Only 10 percent of the total number of photoreceptor cells are located within the pineal roof which is composed of a single cell layer. The photoreceptor cells are connected with nerve cells by synapses displaying characteristic ribbons. Different types of synaptic contacts, i.e. simple, tangential, dyad, triad and invaginated, are found. They are embedded in extended neuropil zones. A particular type of synapse indicates the presence of interneurons. The basal processes of some photoreceptor cells leave the pineal organ and make synaptic contacts with nervous elements located within the area of the subcommissural organ. Employing the method of Karnovsky and Roots (1964) for histochemical demonstration of acetylcholinesterase (AChE) approximately 70 neurons (intrapineal neurons) can be discerned in the pineal organ of Ambystoma tigrinum. In analogy to the distribution of photoreceptor cells only few nerve cells are observed in the roof portion of the pineal organ. Evidently, two different types of AChE-positive intrapineal neurons are present. About 40–50 AChE-positive neurons (extrapineal neurons) are scattered in the area of the subcommissural organ. In this area two types of nerve cells can be distinguished: 1) neurons which send pinealofugal (afferent) axons toward the posterior commissure and 2) neurons which emit pinealopetal (efferent) axons into or toward the pineal organ.The nervous pathways connecting the pineal organ with the diencephalomesencephalic border area are represented by a distinct pineal pedicle and several accessory pineal tracts.Granular nerve fibers run within the posterior commissure and establish synaptic contacts in the commissural region adjacent to the pineal organ. Some of these granular elements enter the pineal organ.The morphology of the nervous apparatus of the pineal organ of Ambystoma tigrinum is discussed in context with evidence from physiological experiments.In partial fulfillment of the requirements for the degree of Dr. med., Faculty of Medicine, Justus Liebig University, GiessenThe author is indebted to Professors A. Oksche and M. Ueck for their interest in this study. Thanks are due to Professor Ch. Baumann, Giessen, and Professor H. Langer, Bochum, for stimulating discussions. The technical assistance of Miss R. Liesner is gratefully acknowledgedDedicated to Professor Berta Scharrer on the occasion of her 70th birthday. Supported by grants from the Deutsche Forschungsgemeinschaft to A.O. and M.U.  相似文献   

15.
The source of innervation of the corpuscular bodies in the palate and the central projections of the afferent fibres of the entire palate was studied in rats by transganglionic transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) and with substance P (SP) immunohistochemistry. WGA-HRP injected into the incisal papilla was taken up by the nerve fibres that terminated in the corpuscles. Retrogradely labelled neurons were observed in the trigeminal ganglion as well as anterogradely labelled terminals in the dorsolateral part of the spinal trigeminal nucleus and in the lateral part of the nucleus of the solitary tract. No labelling could be found in the geniculate ganglion, the facial nerve and the hypoglossal nucleus. Following WGA-HRP injection in the intermolar area and in the soft palate, labelling was only restricted to the trigeminal ganglion. The lamina propria of the entire palate and the corpuscle-enriched area of the incisal papilla and the soft palate were richly innervated by SP-containing fibres. Numerous SP-containing fibres were also observed in the nerve plexus at the base of the corpuscle. In addition, SP-positive neurons were identified in the trigeminal ganglion and SP-labelled terminals in the sensory trigeminal nuclear complex and in the solitary tract nucleus. On the basis of our morphological observations we conclude that the palatal corpuscular bodies are involved in taste perception which is of trigeminal origin.  相似文献   

16.
The pineal tract of rainbow trout from the pineal end vesicle to the posterior commissure was studied by light and electron microscopy. Five types of nerve fibres (photoreceptor basal process, ganglion cell dendrite, electron-lucent fibre and synaptic vesicles, myelinated and unmyelinated axons) and two modes of synapses (photoreceptor basal process ganglion cell dendrite and axon terminal with synaptic vesicles-photoreceptor basal process synapses) are distinguishable in the proximal region of end vesicle. The two distinct synaptic associations with the photoreceptor basal process suggest two different (excitatory and inhibitory) control of pineal sensory activity. At the distal portion of stalk about two thousand nerve fibres converge into dorsal and ventral bundles. Posterior to the habenular commissure several small branches run out laterally from the ventral bundles to the basal margin of the ependyma, but not into the habenular commissure. The dorsal bundle passes through the dorsal side of the subcommissural organ and runs ventral to the posterior commissure. The pineal tract is composed of unmyelinated axons, electron-lucent nerve fibres and myelinated axons. The number of fibres increases throughout the stalk and reaches the maximum number at the opening of pineal lumen to IIIrd ventricle, however, the number of fibres then decreases through the subcommissural organ and posterior commissure. This increase and decrease of nerve fibres suggest the continuous participation of axonal fibres of pineal nerve cells and the ramification or branching of pineal tract, respectively.  相似文献   

17.
Summary Neurones in the suboesophageal ganglion of the locust Schistocerca gregaria were stained with an antiserum raised against gamma amino butyric acid (GABA). This ganglion consists of the fused mandibular, maxillary and labial neuromeres. Immunoreactive cell bodies of similar size and distribution occur in the lateral, ventral and middorsal regions of all three neuromeres. Approximately 200 cell bodies stain in both the mandibular and maxillary neuromeres and 270 in the labial neuromere. A few distinctly larger cells occur in the ventral groups and one large pair occurs in the lateral group of the maxillary neuromere. Dorsal commissures DCIV and DCV are composed mainly of stained fibres, while DCI–DCIII are largely unstained. A ventral commissure also stains in the maxillary neuromere. All longitudinal tracts contain both stained and unstained fibres. Many processes within the neuropil are also immunoreactive. A stained axon is found in the posterior tritocerebral commissure which enters the anterior dorsal region of the mandibular neuromere. The salivary branch of the 7th nerve contains one stained axon and two axons stain in nerve 8 which innervates neck muscles.  相似文献   

18.
Summary Crustacean cardioactive peptide-immunoreactive neurons occur in the entire central nervous system of Locusta migratoria. The present paper focuses on mapping studies in the ventral nerve cord and on peripheral projection sites. Two types of contralaterally projecting neurons occur in all neuromers from the subesophageal to the seventh abdominal ganglia. One type forms terminals at the surface of the thoracic nerves 6 and 1, the distal perisympathetic organs, the lateral heart nerves, and on ventral and dorsal diaphragm muscles. Two large neurons in the anterior part and several neurons of a different type in the posterior part of the terminal ganglion project into the last tergal nerves. In the abdominal neuromers 1–7, two types of ipsilaterally projecting neurons occur, one of which gives rise to neurosecretory terminals in the distal perisympathetic organs, in peripheral areas of the transverse, stigmata and lateral heart nerves. Four subesophageal neurons have putative terminals in the neurilemma of the nervus corporis allati II, and in the corpora allata and cardiaca. In addition, several immunoreactive putative interneurons and other neurons were mapped in the ventral nerve cord. A new in situ whole-mount technique was essential for elucidation of the peripheral pathways and targets of the identified neurons, which suggest a role of the peptide in the control of heartbeat, abdominal ventilatory and visceral muscle activity.Abbreviations AG abdominal ganglia - AM alary muscle - AMN alary muscle nerve - CA corpus allatum - CC corpus cardiacum - dPSO distal perisympathetic organ - LHN lateral heart nerve - LT CCAP-immunoreactive lateral tract - NCA nervus corporis allati - NCC nervus corporis cardiaci - NM neuromer - PMN paramedian nerve - PSO perisympathetic organ - SOG subesophageal ganglion - VDM ventral diaphragm muscles - VNC ventral nerve cord  相似文献   

19.
Summary An antiserum against glutamate decarboxylase (GAD) of the rat brain was used to locate GAD activity in sections of the nervous system of the cockroach, Periplaneta americana. The sixth abdominal ganglion was chosen because electrophysiological evidence suggests the presence of GABAergic inhibitory synapses in the cereal-giant interneuron system. Groups of somata and numerous fibres and tracts were positively labelled by the GAD antiserum. A posterior group of labelled somata could be identified close to the entry of the cereal nerves. A line of somata clusters lay along a ventro-lateral furrow. Another discrete row of GAD-like cells was located dorso-laterally. Some small cells among the dorsal unpaired neurons were labelled. A small central group appeared under these cells. An abundance of GAD-like processes and transversal tracts were found within the neuropile. The different systems of GABAergic inhibitors in the ganglion are discussed; in particular we show that the fibres of cereal nerve X are not labelled. This demonstrates that the latter act on the giant fibres via interneurons. We suggest that the group that sends axons into the overlapping region between the cereal nerve and the giant fibre could be the inhibitory interneurons involved in this system.  相似文献   

20.
Summary An extensive system of somatostatin-immunoreactive neurons has been localized in the forebrain and pituitary of the molly (Poecilia latipinna), using the unlabelled antibody immunocytochemical method.In the hypothalamus, reactive perikarya were scattered throughout the parvocellular divisions of the preoptic nucleus. These cells were smaller in size and more ventral in position than those which stained with antisera to the neurohypophysial hormones, vasotocin and isotocin. A few very small somatostatin-immunoreactive cells were observed in the tuberal region and in the nuclei of the lateral and posterior recesses — areas which were rich in somatostatin-immunoreactive fibres.Somatostatin cells were also found in a small area of the ventral thalamus, mainly in the dorsolateral nucleus. Some of these neurons were large and multipolar, and appeared to form tracts of fibres into the posterior hypothalamus. In the telencephalon there were a few stained cells in the ventral area, with a complex pattern of fibres occurring in parts of the dorsal area.Somatostatin-immunoreactivity was intense in the central and posterior neurohypophysis, and particularly in its finger-like projections into the proximal pars distalis, around groups of growth hormone cells. Examination of material from fishes under various experimental conditions provided evidence for the somatostatin fibres originating from the preoptic neurons being involved in the control of growth hormone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号