首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABCA1 promotes cholesterol efflux from cells and is required for maintaining plasma cholesterol levels. Cholesterol homeostasis is important in the production of beta-amyloid (Abeta), a peptide that is overproduced in Alzheimer's disease (AD). Overexpression of ABCA1 can be achieved by stimulating Liver X Receptors (LXR), and changes in Abeta have been reported after LXR stimulation in vitro. To determine whether ABCA1 could alter endogenous Abeta levels, we used two different in vivo systems. We first examined the effects of an LXR agonist (TO-901317) on wild-type mice and found an increase in brain ABCA1 and apoE levels, which caused an increase in plasma cholesterol. This was accompanied by a decrease in brain Abeta levels. We then examined endogenous Abeta levels in ABCA1 knockout mice and found that, despite having no ABCA1, lowered brain apoE levels, and lowered plasma cholesterol, there was no change in Abeta levels. To assess these in vivo models in an in vitro system, we designed a model in which cholesterol transport via ABCA1 (or related transporters) was prevented. Switching off cholesterol efflux, even in the presence of TO-901317, caused no change in Abeta levels. However, when efflux capability was restored, TO-901317 reduced Abeta levels. These data show that promoting cholesterol efflux is a viable target for Abeta reducing strategies; however, knockout of cholesterol transporters is not sufficient to alter Abeta in vitro or in vivo.  相似文献   

2.
Maintenance of an adequate supply of cholesterol is important for neuronal function, whereas excess cholesterol promotes amyloid precursor protein (APP) cleavage generating toxic amyloid-beta (Abeta) peptides. To gain insights into the pathways that regulate neuronal cholesterol level, we investigated the potential for reconstituted apolipoprotein E (apoE) discs, resembling nascent lipoprotein complexes in the central nervous system, to stimulate neuronal [3H]cholesterol efflux. ApoE discs potently accelerated cholesterol efflux from primary human neurons and cell lines. The process was saturable (17.5 microg of apoE/ml) and was not influenced by APOE genotype. High performance liquid chromatography analysis of cholesterol and cholesterol metabolites effluxed from neurons indicated that <25% of the released cholesterol was modified to polar products (e.g. 24-hydroxycholesterol) that diffuse from neuronal membranes. Thus, most cholesterol (approximately 75%) appeared to be effluxed from neurons in a native state via a transporter pathway. ATP-binding cassette transporters ABCA1, ABCA2, and ABCG1 were detected in neurons and neuroblastoma cell lines and expression of these cDNAs revealed that ABCA1 and ABCG1 stimulated cholesterol efflux to apoE discs. In addition, ABCA1 and ABCG1 expression in Chinese hamster ovary cells that stably express human APP significantly reduced Abeta generation, whereas ABCA2 did not modulate either cholesterol efflux or Abeta generation. These data indicate that ABCA1 and ABCG1 play a significant role in the regulation of neuronal cholesterol efflux to apoE discs and in suppression of APP processing to generate Abeta peptides.  相似文献   

3.
4.
5.
Amyloid beta peptide (Abeta) has a key role in the pathological process of Alzheimer's disease (AD), but the physiological function of Abeta and of the amyloid precursor protein (APP) is unknown. Recently, it was shown that APP processing is sensitive to cholesterol and other lipids. Hydroxymethylglutaryl-CoA reductase (HMGR) and sphingomyelinases (SMases) are the main enzymes that regulate cholesterol biosynthesis and sphingomyelin (SM) levels, respectively. We show that control of cholesterol and SM metabolism involves APP processing. Abeta42 directly activates neutral SMase and downregulates SM levels, whereas Abeta40 reduces cholesterol de novo synthesis by inhibition of HMGR activity. This process strictly depends on gamma-secretase activity. In line with altered Abeta40/42 generation, pathological presenilin mutations result in increased cholesterol and decreased SM levels. Our results demonstrate a biological function for APP processing and also a functional basis for the link that has been observed between lipids and Alzheimer's disease (AD).  相似文献   

6.
ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and, like its closest homolog ABCA1, belongs to the ABCA subfamily of full-length ABC transporters. ABCA1 promotes cellular cholesterol efflux to lipid-free apolipoprotein acceptors and also inhibits the production of neurotoxic β-amyloid (Aβ) peptides in vitro . The potential functions of ABCA7 in the brain are unknown. This study investigated the ability of ABCA7 to regulate cholesterol efflux to extracellular apolipoprotein acceptors and to modulate Aβ production. The transient expression of ABCA7 in human embryonic kidney cells significantly stimulated cholesterol efflux (fourfold) to apolipoprotein E (apoE) discoidal lipid complexes but not to lipid-free apoE or apoA-I. ABCA7 also significantly inhibited Aβ secretion from Chinese hamster ovary cells stably expressing human amyloid precursor protein (APP) or APP containing the Swedish K670M671→N670L671 mutations when compared with mock-transfected cells. Studies with fluorogenic substrates indicated that ABCA7 had no impact on α-, β-, or γ-secretase activities. Live cell imaging of Chinese hamster ovary cells expressing APP-GFP indicated an apparent retention of APP in a perinuclear location in ABCA7 co-transfected cells. These studies indicate that ABCA7 has the capacity to stimulate cellular cholesterol efflux to apoE discs and regulate APP processing resulting in an inhibition of Aβ production.  相似文献   

7.
ABCA1 (ATP-binding cassette transporter A1) is a major regulator of cholesterol efflux and high density lipoprotein (HDL) metabolism. Mutations in human ABCA1 cause severe HDL deficiencies characterized by the virtual absence of apoA-I and HDL and prevalent atherosclerosis. Recently, it has been reported that the lack of ABCA1 causes a significant reduction of apoE protein level in the brain of ABCA1 knock-out (ABCA1-/-) mice. ApoE isoforms strongly affect Alzheimer disease (AD) pathology and risk. To determine further the effect of ABCA1 on amyloid deposition, we used APP23 transgenic mice in which the human familial Swedish AD mutant is expressed only in neurons. We demonstrated that the targeted disruption of ABCA1 increases amyloid deposition in APP23 mice, and the effect is manifested by an increased level of Abeta immunoreactivity, as well as thioflavine S-positive plaques in brain parenchyma. We found that the lack of ABCA1 also considerably increased the level of cerebral amyloid angiopathy and exacerbated cerebral amyloid angiopathy-related microhemorrhage in APP23/ABCA1-/- mice. Remarkably, the elevation in parenchymal and vascular amyloid in APP23/ABCA1-/- mice was accompanied by a dramatic decrease in the level of soluble brain apoE, although insoluble apoE was not changed. The elevation of insoluble Abeta fraction in old APP23/ABCA1-/- mice, accompanied by a lack of changes in APP processing and soluble beta-amyloid in young APP23/ABCA1-/- animals, supports the conclusion that the ABCA1 deficiency increases amyloid deposition. These results suggest that ABCA1 plays a role in the pathogenesis of parenchymal and cerebrovascular amyloid pathology and thus may be considered a therapeutic target in AD.  相似文献   

8.
The expression, function, and regulation of the cholesterol efflux molecule, ABCA1, has been extensively examined in peripheral tissues but only poorly studied in the brain. Brain cholesterol metabolism is of interest because several lines of evidence suggest that elevated cholesterol increases the risk of Alzheimer's disease. We found a largely neuronal expression of ABCA1 in normal rat brain by in situ hybridization. ABCA1 message was dramatically up-regulated in neurons and glia in areas of damage by hippocampal AMPA lesion after 3-7 days. Immunoblot analysis demonstrated ABCA1 protein in cultured neuronal and glial cells, and expression was induced by ligands of the nuclear hormone receptors of the retinoid X receptor and liver X receptor family. ABCA1 was induced by treatment with retinoic acid and several oxysterols, including 22(R)-hydroxycholesterol and 24-hydroxycholesterol. Expression of an ABCA1-green fluorescent protein construct in neuroblastoma cells demonstrated fluorescence in perinuclear compartments and on the plasma membrane. Because the Abeta peptide is important in Alzheimer's disease pathogenesis, we examined whether ABCA1 induction altered Abeta levels. Treatment of neuroblastoma cells with retinoic acid and 22(R)-hydroxycholesterol caused significant increases in secreted Abeta40 (29%) and Abeta42 (65%). Treatment with a nonsteroidal liver X receptor ligand, TO-901317, similarly increased levels of secreted Abeta40 (25%) and Abeta42 (126%). The increase in secreted Abeta levels was reduced by RNAi blocking of ABCA1 expression. These data suggest that the cholesterol efflux molecule ABCA1 may also be involved in the secretion of the membrane-associated molecule, Abeta.  相似文献   

9.
The LXR nuclear receptors are intracellular sensors of cholesterol excess and are activated by various oxysterols. LXRs have been shown to regulate multiple genes of lipid metabolism, including ABCA1 (formerly known as ABC1). ABCA1 is a lipid pump that effluxes cholesterol and phospholipid out of cells. ABCA1 deficiency causes extremely low high density lipoprotein (HDL) levels, demonstrating the importance of ABCA1 in the formation of HDL. The present work shows that the acetyl-podocarpic dimer (APD) is a potent, selective agonist for both LXRalpha (NR1H3) and LXRbeta (NR1H2). In transient transactivation assays, APD was approximately 1000-fold more potent, and yielded approximately 6-fold greater maximal stimulation, than the widely used LXR agonist 22-(R)-hydroxycholesterol. APD induced ABCA1 mRNA levels, and increased efflux of both cholesterol and phospholipid, from multiple cell types. Gas chromatography-mass spectrometry measurements demonstrated that APD stimulated efflux of endogenous cholesterol, eliminating any possible artifacts of cholesterol labeling. For both mRNA induction and stimulation of cholesterol efflux, APD was found to be more effective than was cholesterol loading. Taken together, these data show that APD is a more effective LXR agonist than endogenous oxysterols. LXR agonists may therefore be useful for the prevention and treatment of atherosclerosis, especially in the context of low HDL levels.  相似文献   

10.
The ATP-binding cassette transporter A1 (ABCA1) participates in the efflux of cholesterol from cells. It remains unclear whether ABCA1 functions to efflux cholesterol across the basolateral or apical membrane of the intestine. We used a chicken model of ABCA1 dysfunction, the Wisconsin hypoalpha mutant (WHAM) chicken, to address this issue. After an oral gavage of radioactive cholesterol, the percentage appearing in the bloodstream was reduced by 79% in the WHAM chicken along with a 97% reduction in the amount of tracer in high density lipoprotein. In contrast, the percentage of radioactive cholesterol absorbed from the lumen into the intestine was not affected by the ABCA1 mutation. Liver X receptor (LXR) agonists have been inferred to decrease cholesterol absorption through activation of ABCA1 expression. However, the LXR agonist T0901317 decreased cholesterol absorption equally in both wild type and WHAM chickens, indicating that the effect of LXR activation on cholesterol absorption is independent of ABCA1. The ABCA1 mutation resulted in accumulation of radioactive cholesterol ester in the intestine and the liver of the WHAM chicken (5.0- and 4.4-fold, respectively), whereas biliary lipid concentrations were unaltered by the WHAM mutation. In summary, ABCA1 regulates the efflux of cholesterol from the basolateral but not apical membrane in the intestine and the liver.  相似文献   

11.
Keratinocytes require abundant cholesterol for cutaneous permeability barrier function; hence, the regulation of cholesterol homeostasis is of great importance. ABCA1 is a membrane transporter responsible for cholesterol efflux and plays a pivotal role in regulating cellular cholesterol levels. We demonstrate that ABCA1 is expressed in cultured human keratinocytes (CHKs) and murine epidermis. Liver X receptor (LXR) activation markedly stimulates ABCA1 mRNA and protein levels in CHKs and mouse epidermis. In addition to LXR, activators of peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and retinoid X receptor (RXR), but neither PPARgamma nor retinoic acid receptor, also increase ABCA1 expression in CHKs. Increases in cholesterol supply induced by LDL or mevalonate stimulate ABCA1 expression, whereas inhibiting cholesterol synthesis with statins or cholesterol sulfate decreases ABCA1 expression in CHKs. After acute permeability barrier disruption by either tape-stripping or acetone treatment, ABCA1 expression declines, and this attenuates cellular cholesterol efflux, making more cholesterol available for regeneration of the barrier. In addition, during fetal epidermal development, ABCA1 expression decreases at days 18-22 of gestation (term = 22 days), leaving more cholesterol available during the critical period of barrier formation. Together, our results show that ABCA1 is expressed in keratinocytes, where it is negatively regulated by a decrease in cellular cholesterol levels or altered permeability barrier requirements and positively regulated by activators of LXR, PPARs, and RXR or increases in cellular cholesterol levels.  相似文献   

12.
Cholesterol homeostasis is of emerging therapeutic importance for Alzheimer's disease (AD). Agonists of liver-X-receptors (LXRs) stimulate several genes that regulate cholesterol homeostasis, and synthetic LXR agonists decrease neuropathological and cognitive phenotypes in AD mouse models. The cholesterol transporter ABCG1 is LXR-responsive and highly expressed in brain. In vitro, conflicting reports exist as to whether ABCG1 promotes or impedes Abeta production. To clarify the in vivo roles of ABCG1 in Abeta metabolism and brain cholesterol homeostasis, we assessed neuropathological and cognitive outcome measures in PDAPP mice expressing excess transgenic ABCG1. A 6-fold increase in ABCG1 levels did not alter Abeta, amyloid, apolipoprotein E levels, cholesterol efflux, or cognitive performance in PDAPP mice. Furthermore, endogenous murine Abeta levels were unchanged in both ABCG1-overexpressing or ABCG1-deficient mice. These data argue against a direct role for ABCG1 in AD. However, excess ABCG1 is associated with decreased levels of sterol precursors and increased levels of SREBP-2 and HMG-CoA-reductase mRNA, whereas deficiency of ABCG1 leads to the opposite effects. Although functions for ABCG1 in cholesterol efflux and Abeta metabolism have been proposed based on results with cellular model systems, the in vivo role of this enigmatic transporter may be largely one of regulating the sterol biosynthetic pathway.  相似文献   

13.
Impaired cell cholesterol trafficking in Niemann-Pick type C (NPC) disease results in the first known instance of impaired regulation of the ATP-binding cassette transporter A1 (ABCA1), a lipid transporter mediating the rate-limiting step in high density lipoprotein (HDL) formation, as a cause of low plasma HDL-cholesterol in humans. We show here that treatment of human NPC1(-/-) fibroblasts with the liver X receptor (LXR) agonist TO-901317 increases ABCA1 expression and activity in human NPC1(-/-) fibroblasts, as indicated by near normalization of efflux of radiolabeled phosphatidylcholine and a marked increase in efflux of cholesterol mass to apoA-I. LXR agonist treatment prior to and during apoA-I incubation resulted in reduction in filipin staining of unesterified cholesterol in late endosomes/lysosomes, as well as cholesterol mass, in NPC1(-/-) cells. HDL species in human NPC disease plasma showed the same pattern of diminished large, cholesterol-rich alpha-1 HDL particles as seen in isolated heterozygous ABCA1 deficiency. Incubating NPC1(-/-) fibroblasts with the LXR agonist normalized the pattern of HDL particle formation by these cells. ABCG1, another LXR target gene involved in cholesterol efflux to HDL, also showed diminished expression in NPC1(-/-) fibroblasts and increased expression upon LXR agonist treatment. These results suggest that NPC1 mutations can be largely bypassed and that NPC1 protein function is non-essential for the trafficking and removal of cellular cholesterol if the down-stream defects in ABCA1 and ABCG1 regulation in NPC disease cells are corrected using an LXR agonist.  相似文献   

14.
15.
Caveolin-1 (Cav1), a structural protein required for the formation of invaginated membrane domains known as caveolae, has been implicated in cholesterol trafficking and homeostasis. Here we investigated the contribution of Cav1 to apolipoprotein A-I (apoA-I) cell surface binding and intracellular processing using mouse embryonic fibroblasts (MEFs) derived from wild type (WT) or Cav1-deficient (Cav1(-/-)) animals. We found that cells expressing Cav1 have 2.6-fold more apoA-I binding sites than Cav1(-/-) cells although these additional binding sites are not associated with detergent-free lipid rafts. Further, Cav1-mediated binding targets apoA-I for internalization and degradation and these processes are not correlated to cholesterol efflux. Despite lower apoA-I binding, cholesterol efflux from Cav1(-/-) MEFs is 1.7-fold higher than from WT MEFs. Stimulation of ABCA1 expression with an LXR agonist enhances cholesterol efflux from both WT and Cav1(-/-) cells without increasing apoA-I surface binding or affecting apoA-I processing. Our results indicate that there are at least two independent lipid binding sites for apoA-I; Cav1-mediated apoA-I surface binding and uptake is not linked to cholesterol efflux, indicating that membrane domains other than caveolae regulate ABCA1-mediated cholesterol efflux.  相似文献   

16.
Aggregates of beta-amyloid peptide (Abeta) are the major component of the amyloid core of the senile plaques observed in Alzheimer's disease (AD). Abeta results from the amyloidogenic processing of its precursor, the amyloid precursor protein (APP), by beta- and gamma-secretase activities. If beta-secretase has recently been identified and termed BACE, the identity of gamma-secretase is still obscure. Studies with knock-out mice showed that presenilin 1 (PS1), of which mutations are known to be the first cause of inherited AD, is mandatory for the gamma-secretase activity. However, the proteolytic activity of PS1 remains a matter of debate. Here we used transfected Sf9 insect cells, a cellular model lacking endogenous beta- and/or gamma-secretase activities, to characterize the role of BACE and PS1 in the amyloidogenic processing of human APP. We show that, in Sf9 cells, BACE performs the expected beta-secretase cleavage of APP, generating C99. We also show that C99, which is a substrate of gamma-secretase, tightly binds to the human PS1. Despite this interaction, Sf9 cells still do not produce Abeta. This strongly argues against a direct proteolytic activity of PS1 in APP processing, and points toward an implication of PS1 in trafficking/presenting its substrate to the gamma-secretase.  相似文献   

17.
Hormone-sensitive lipase (HSL) hydrolyse acylglycerols, cholesteryl and retinyl esters. HSL is a key lipase in mice testis, as HSL deficiency results in male sterility. The present work study the effects of the deficiency and lack of HSL on the localization and expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in uptake and efflux of cholesterol in mice testis, to determine the impact of HSL gene dosage on testis morphology, lipid homeostasis and fertility. The results of this work show that the lack of HSL in mice alters testis morphology and spermatogenesis, decreasing sperm counts, sperm motility and increasing the amount of Leydig cells and lipid droplets. They also show that there are differences in the localization of HSL, SR-BI, LDLr and ABCA1 in HSL+/+, HSL+/− and HSL−/− mice. The deficiency or lack of HSL has effects on protein and mRNA expression of genes involved in lipid metabolisms in mouse testis. HSL−/− testis have augmented expression of SR-BI, LDLr, ABCA1 and LXRβ, a critical sterol sensor that regulate multiple genes involved in lipid metabolism; whereas LDLr expression decreased in HSL+/− mice. Plin2, Abca1 and Ldlr mRNA levels increased; and LXRα (Nr1h3) and LXRβ (Nr1h2) decreased in testis from HSL−/− compared with HSL+/+; with no differences in Scarb1. Together these data suggest that HSL deficiency or lack in mice testis induces lipid homeostasis alterations that affect the cellular localization and expression of key receptors/transporter involved in cellular cholesterol uptake and efflux (SR-BI, LDRr, ABCA1); alters normal cellular function and impact fertility.  相似文献   

18.
ABCA1-deficient mice have low levels of poorly lipidated apolipoprotein E (apoE) and exhibit increased amyloid load. To test whether excess ABCA1 protects from amyloid deposition, we crossed APP/PS1 mice to ABCA1 bacterial artificial chromosome (BAC) transgenic mice. Compared with wild-type animals, the ABCA1 BAC led to a 50% increase in cortical ABCA1 protein and a 15% increase in apoE abundance, demonstrating that this BAC supports modest ABCA1 overexpression in brain. However, this was observed only in animals that do not deposit amyloid. Comparison of ABCA1/APP/PS1 mice with APP/PS1 controls revealed no differences in levels of brain ABCA1 protein, amyloid, Abeta, or apoE, despite clear retention of ABCA1 overexpression in the livers of these animals. To further investigate ABCA1 expression in the amyloid-containing brain, we then compared ABCA1 mRNA and protein levels in young and aged cortex and cerebellum of APP/PS1 and ABCA1/APP/PS1 animals. Compared with APP/PS1 controls, aged ABCA1/APP/PS1 mice exhibited increased ABCA1 mRNA, but not protein, selectively in cortex. Additionally, ABCA1 mRNA levels were not increased before amyloid deposition but were induced only in the presence of extensive Abeta and amyloid levels. These data suggest that an induction of ABCA1 expression may be associated with late-stage Alzheimer's neuropathology.  相似文献   

19.
Abeta(1-42) peptide, found as aggregated species in Alzheimer's disease brain, is linked to the onset of Alzheimer's disease. Many reports have linked metals to inducing Abeta aggregation and amyloid plaque formation. Abeta(25-35), a fragment from the C-terminal end of Abeta(1-42), lacks the metal coordinating sites found in the full-length peptide and is neurotoxic to cortical cortex cell cultures. We report solid-state NMR studies of Abeta(25-35) in model lipid membrane systems of anionic phospholipids and cholesterol, and compare structural changes to those of Abeta(1-42). When added after vesicle formation, Abeta(25-35) was found to interact with the lipid headgroups and slightly perturb the lipid acyl-chain region; when Abeta(25-35) was included during vesicle formation, it inserted deeper into the bilayer. While Abeta(25-35) retained the same beta-sheet structure irrespective of the mode of addition, the longer Abeta(1-42) appeared to have an increase in beta-sheet structure at the C-terminus when added to phospholipid liposomes after vesicle formation. Since the Abeta(25-35) fragment is also neurotoxic, the full-length peptide may have more than one pathway for toxicity.  相似文献   

20.
The familial Alzheimer's disease gene product amyloid beta precursor protein (APP) is sequentially processed by beta- and gamma-secretases to generate the Abeta peptide. The biochemical pathway leading to Abeta formation has been extensively studied since extracellular aggregates of Abeta peptides are considered the culprit of Alzheimer's disease. Aside from its pathological relevance, the biological role of APP processing is unknown. Cleavage of APP by gamma-secretase releases, together with Abeta, a COOH-terminal APP intracellular domain, termed AID. This peptide has recently been identified in brain tissue of normal control and patients with sporadic Alzheimer's disease. We have previously shown that AID acts as a positive regulator of apoptosis. Nevertheless, the molecular mechanism by which AID regulates this process remains unknown. Hoping to gain clues about the function of APP, we used the yeast two-hybrid system to identify interaction between the AID region of APP and JNK-interacting protein-1 (JIP1). This molecular interaction is confirmed in vitro, in vivo by fluorescence resonance energy transfer (FRET), and in mouse brain lysates. These data provide a link between APP and its processing by gamma-secretase, and stress kinase signaling pathways. These pathways are known regulators of apoptosis and may be involved in the pathogenesis of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号