首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Mori    H. Ohkusu    M. Kohsaka    M. Kurono 《Journal of neurochemistry》1973,20(4):1291-1292
E xcept for the crystalline deposits of hypoxanthine found in skeletal muscle of patients with congenital xanthine oxidase deficiency (xanthinuria) there are few reports concerning oxypurines in the mammalian tissues (P arker , S nedden and W atts , 1969, 1970). Since it is difficult to separate hypoxanthine from xanthine in biological fluids (S immonds and W ilson , 1967), the distribution of hypoxanthine in mammalian tissues is not known in detail.
This paper shows that cubic or rod crystals of C5H4ON4are easily isolated from calf brain by column chromatography with ion exchange resin Amberlite CG120 and their identity with hypoxanthine was shown by means of nuclear magnetic resonance and mass Spectrometry.  相似文献   

2.
Microvessel segments were isolated from rat brain and used for studies of hypoxanthine transport and metabolism. Compared to an homogenate of cerebral cortex, the isolated microvessels were 3.7-fold enriched in xanthine oxidase. Incubation of the isolated microvessels with labeled hypoxanthine resulted in its rapid uptake followed by the slower accumulation of hypoxanthine metabolites including xanthine and uric acid. The intracellular accumulation of these metabolites was inhibited by the xanthine oxidase inhibitor allopurinol. Hypoxanthine transport into isolated capillaries was inhibited by adenine but not by representative pyrimidines or nucleosides. Similar results were obtained when blood to brain transport of hypoxanthine in vivo was measured using the intracarotid bolus injection technique. Thus, hypoxanthine is transported into brain capillaries by a transport system shared with adenine. Once inside the cell, hypoxanthine can be metabolized to xanthine and uric acid by xanthine oxidase. Since this reaction leads to the release of oxygen radicals, it is suggested that brain capillaries may be susceptible to free radical mediated damage. This would be most likely to occur in conditions where the brain hypoxanthine concentration is increased as following ischemia.  相似文献   

3.
1. A patient with congenital deficiency of xanthine oxidase (EC 1.2.3.2) (xanthinuria) excreted the xanthine isomer 4,6-dihydroxypyrazolo[3,4-d]pyrimidine (oxipurinol) in his urine when the hypoxanthine isomer 4-hydroxypyrazolo[3,4-d]pyrimidine (allopurinol) was given by mouth. 2. The identity of the oxipurinol that the patient excreted was established by mass spectrometry. 3. The mass spectra and infrared spectra of allopurinol, oxipurinol, hypoxanthine and xanthine are compared. 4. A mechanism for the fragmentation of these compounds that occurs during their mass-spectrometric investigation is proposed. 5. A possible metabolic pathway for the oxidation of allopurinol to oxipurinol in the absence of xanthine oxidase is discussed.  相似文献   

4.
Impairment of lysosomal stability due to reactive oxygen species generated during the oxidation of hypoxanthine by xanthine oxidase was studied in rat liver lysosomes isolated in a discontinuous Nycodenz gradient. Production of O2.- and H2O2 during the hypoxanthine/xanthine oxidase reaction occurred for at least 5 min, while lysosomal damage, indicated by the release of N-acetyl-beta-glucosaminidase, occurred within 30 s, there being no further damage to these organelles thereafter. The extent of lysosomal enzyme release increased with increasing xanthine oxidase concentration. Superoxide dismutase and catalase did not prevent lysosomal damage during the hypoxanthine/xanthine oxidase reaction. Lysosomes reduced xanthine oxidase activity, as assessed in terms of O2 consumption, only slightly but substantially inhibited in a competitive manner the O2.- -mediated reduction of cytochrome c. This inhibition was almost completely reversed by potassium cyanide, thus pointing to the presence of a cyanide-sensitive superoxide dismutase in the lysosomal fraction. However, potassium cyanide did not affect the hypoxanthine/xanthine oxidase-mediated lysosomal damage, thus suggesting an inability of the lysosomal superoxide dismutase to protect the organelles. Negligible malondialdehyde formation was observed in the lysosomes either during the hypoxanthine/xanthine oxidase reaction or with different selective experimental approaches known to produce lipid peroxidation in other organelles such as microsomes and mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. The presence of hypoxanthine and xanthine in the skeletal muscle of two patients with congenital xanthine oxidase deficiency (xanthinuria) was demonstrated by high-resolution mass spectrometry. 2. Evidence was obtained for the presence of a trace of hypoxanthine only in normal muscle. 3. Dry pulverized tissue was introduced directly into the mass spectrometer and preliminary chemical processing of the tissue was therefore unnecessary. 4. The criteria for the mass-spectrometric identification of hypoxanthine and xanthine in the tissue and the significance of the observations are discussed.  相似文献   

6.
The high-speed supernatant from homogenates of rat small intestine contains a heat-stable, dialyzable factor which showed a time-dependent inhibition of peroxidase activity in salt extracts of the tissue. The inhibitor was purified by chromatography on Dowex 50W-X8 and identified as xanthine. The inhibition of peroxidase by xanthine was prevented by allopurinol, an inhibitor of xanthine oxidase, and hypoxanthine was also found to be inhibitory. H2O2, produced in the reaction catalyzed by xanthine oxidase, was shown to be directly responsible for the observed inhibition. The time-dependent loss of peroxidase activity in the presence of xanthine or hypoxanthine occurred more rapidly in NH4Cl than in CaCl2 extracts of small intestine and was due to the difference in the initial concentration of H2O2 in these two extracts. The possible relationship between peroxidase and xanthine oxidase in the rat small intestine is discussed.  相似文献   

7.
The composition of dialyzable transfer factor has been studied. A fraction that had previously been shown to contain the property of transferring delayed hypersensitivity to immunodeficient patients was found to contain hypoxanthine. Removal of hypoxanthine from whole transfer factor by digestion with xanthine oxidase did not impair the ability of the transfer factor to passively sensitize rhesus monkeys. Moreover, studies with pure hypoxanthine indicated that it was not responsible for certain antigen-independent activities in transfer factor such as chemotaxis or cyclic nucleotide accumulation. Digestion of whole transfer factor with xanthine oxidase did not affect its chemotactic activity, but did reduce its effect on cyclic nucleotide accumulation.  相似文献   

8.
Lesch-Nyhan syndrome (LNS) is caused by a severe deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and clinically characterized by self-injurious behavior and nephrolithiasis; the latter is treatable with allopurinol, an inhibitor of xanthine oxidase which converts xanthine and hypoxanthine into uric acid. In the HPRT gene, more than 200 different mutations are known, and de novo mutation occurs at a high rate. Thus, there is a great need to develop a highly specific method to detect patients with HPRT dysfunction by quantifying the metabolites related to this enzyme. A simplified urease pretreatment of urine, gas chromatography-mass spectrometry, and stable isotope dilution method, developed for cutting-edge metabonomics, was further applied to quantify hypoxanthine, xanthine, urate, guanine and adenine in 100 microl or less urine or eluate from filter-paper-urine strips by additional use of stable isotope labeled guanine and adenine as the internal standards. In this procedure, the recoveries were above 93% and linearities (r(2)=0.9947-1.000) and CV values (below 7%) of the indicators were satisfactory. In four patients with proven LNS, hypoxanthine was elevated to 8.4-9.0 SD above the normal mean, xanthine to 4-6 SD above the normal mean, guanine to 1.9-3.7 SD, and adenine was decreased. Because of the allopurinol treatment for all the four patients, their level of urate was not elevated, orotate increased, and uracil was unchanged as compared with the control value. It was concluded that even in the presence of treatment with allopurinol, patients with LNS can be chemically diagnosed by this procedure. Abnormality in the levels of hypoxanthine and xanthine was quite prominent and n, the number of standard deviations above the normal mean, combined for the two, was above 12.9.  相似文献   

9.
F Heinz  S Reckel  J R Kalden 《Enzyme》1979,24(4):239-246
A new method for the determination of xanthine oxidase activity with xanthine or hypoxanthine is described. The hydrogen peroxide produced by the oxidation of the substrates is reduced by catalase in the presence of high concentrations of ethanol. The acetaldehyde formed is further oxidized by aldehyde dehydrogenase NAD or NADP-dependent. The reduction rate of the coenzymes were measured at 334 nm and utilized as indicators for the xanthine oxidase. The sensitivity of the method with xanthine as substrate can be doubled by the addition of uricase, which oxidizes uric acid to allantoin.  相似文献   

10.
The metabolic status of a patient previously characterized as deficient in sulfite oxidase was reexamined applying new methodology which has been developed to distinguish between a defect specific to the sulfite oxidase protein and sulfite oxidase deficiency which arises as a result of molybdenum cofactor deficiency. Urothione, the metabolic degradation product of the molybdenum cofactor, was undetectable in urine samples from the patient. Analysis of molybdenum cofactor levels in fibroblasts by monitoring reconstitution of apo nitrate reductase in extracts of the Neurospora crassa mutant nit-1 revealed that cells from the patient were severely depleted. Quantitation of urinary oxypurines showed that hypoxanthine and xanthine were highly elevated while uric acid remained in the normal range. These results were interpreted to indicate a severe but incomplete deficiency of the molybdenum cofactor. The presence of very low levels of active cofactor, supporting the synthesis of low levels of active sulfite oxidase and xanthine dehydrogenase, could explain the metabolic patterns of sulfur and purine products and the relatively mild clinical symptoms in this individual.  相似文献   

11.
《Life sciences》1994,55(18):PL351-PL357
Cultured rat glomerular mesangial cells were damaged when exposed to oxyradicals generated either from xanthine oxidase plus hypoxanthine, or by superoxide radicals formed from menadione. Morin hydrate is an antioxidant extracted from yellow Brazil wood. When morin hydrate was added to cultured rat glomerular mesangial cells which were attacked by oxyradicals generated by xanthine oxidase plus hypoxanthine, the survival time of the cells was doubled. However, this protective effect of morin hydrate was less marked when the cells were attacked by menadione. Note that the protective effects of Trolox which is a polar analogue of vitamin E were miniscule relative to those of morin hydrate with both oxidants.  相似文献   

12.
Impairment of lysosomal stability due to reactive oxygen species generated during the oxidation of hypoxanthine by xanthine oxidase was studied in rat liver lysosomes isolated in a discontinuous Nycodenz gradient. Production of O 2 and H2O2 during the hypoxanthine/xanthine oxidase reaction occurred for at least 5 min, while lysosomal damage, indicated by the release of N-acetyl-β-glucosaminidase, occurred within 30 s, there being no further damage to these organelles thereafter. The extent of lysosomal enzyme release increased with increasing xanthine oxidase concentration. Superoxide dismutase and catalase did not prevent lysosomal damage during the hypoxanthine/xanthine oxidase reaction. Lysosomes reduced xanthine oxidase activity, as assessed in terms of O2 consumption, only slightly but substantially inhibited in a competitive manner the O 2 -mediated reduction of cytochrome c. This inhibition was almost completely reversed by potassium cyanide, thus pointing to the presence of a cyanide-sensitive Superoxide dismutase in the lysosomal fraction. However, potassium cyanide did not affect the hypoxanthine/xanthine oxidase-mediated lysosomal damage, thus suggesting an inability of the lysosomal superoxide dismutase to protect the organelles. Negligible malondialdehyde formation was observed in the lysosomes either during the hypoxanthine/xanthine oxidase reaction or with different selective experimental approaches known to produce lipid peroxidation in other organelles such as microsomes and mitochondria. These results are interpreted in terms of a possible lysosomal membrane permeability to O 2 causing organelle impairment by a process that, though leading to enzyme-marker leakage, does not involve lipid peroxidation.  相似文献   

13.
A novel coupled enzyme assay for measuring inorganic pyrophosphate (PP(i)) in biological samples is described. The total PP(i) is determined by a reaction with inosine 5'-monophosphate, catalyzed by hypoxanthine-guanine phosphoribosyl transferase, yielding hypoxanthine and phosphoribosyl pyrophosphate. The hypoxanthine is oxidized to uric acid by xanthine oxidase/xanthine dehydrogenase and can be measured by formation of formazan when a tetrazolium salt is used as the oxidant. The method is also useful for detecting and quantifying PP(i) released from nucleotides during polymerase chain reactions. This rapid and simple method for detecting amplified nucleic acids permits low-cost monitoring by eye or spectrophotometer.  相似文献   

14.
Myocardial xanthine oxidase/dehydrogenase   总被引:3,自引:0,他引:3  
High-energy phosphates in heart muscle deprived of oxygen are rapidly broken down to purine nucleosides and oxypurines. We studied the role of xanthine oxidase/dehydrogenase (EC 1.2.3.2/EC 1.2.1.37) in this process with novel high-pressure liquid chromatographic techniques. Under various conditions, including ischemia and anoxia, the isolated perfused rat heart released adenosine, inosine and hypoxanthine, and also substantial amounts of xanthine and urate. Allopurinol, an inhibitor of xanthine oxidase, greatly enhanced the release of hypoxanthine. From the purine release we calculated that the rat heart contained about 18 mU xanthine oxidase per g wet weight. Subsequently, we measured a xanthine oxidase activity of 9 mU/g wet wt. in rat-heart homogenate. When endogenous low molecular weight inhibitors were removed by gel-filtration, the activity increased to 31 mU/g wet wt. Rat myocardial xanthine oxidase seems to be present mainly in the dehydrogenase form, which upon storage at -20 degrees C is converted to the oxidase form.  相似文献   

15.
Phase contrast and electron microscopic experiments demonstrated that oxyradicals generated with xanthine oxidase and hypoxanthine markedly damage rat kidney mesangial and porcine tubular epithelial cells. Purpurogallin, a phenol found in oak nutgalls, prolongs survival of the xanthine oxidase exposed renal cells three- to nine-fold longer than those without purpurogallin present. At levels equimolar to purpurogallin, either Trolox or allopurinol is less effective in delaying cell necrosis. Purpurogallin scavenges not only xanthine oxidase generated oxyradicals, but also non-enzymatically produced peroxyl radicals, more actively than equimolar levels of Trolox or allopurinol. Purpurogallin inhibits xanthine oxidase with severalfold higher potency than allopurinol and its more active metabolite oxypurinol. Therefore, purpurogallin is a stronger antioxidant than Trolox and a more potent inhibitor of xanthine oxidase than allopurinol as well as oxypurinol.  相似文献   

16.
Cape buffalo serum contains xanthine oxidase which generates trypanocidal H2O2 during the catabolism of hypoxanthine and xanthine. The present studies show that xanthine oxidase-dependent trypanocidal activity in Cape buffalo serum was also elicited by purine nucleotides, nucleosides, and bases even though xanthine oxidase did not catabolize those purines. The paradox was explained in part, by the presence in serum of purine nucleoside phosphorylase and adenosine deaminase, that, together with xanthine oxidase, catabolized adenosine, inosine, hypoxanthine, and xanthine to uric acid yielding trypanocidal H2O2. In addition, purine catabolism by trypanosomes provided substrates for serum xanthine oxidase and was implicated in the triggering of xanthine oxidase-dependent trypanocidal activity by purines that were not directly catabolized to uric acid in Cape buffalo serum, namely guanosine, guanine, adenine monophosphate, guanosine diphosphate, adenosine 3′:5-cyclic monophosphate, and 1-methylinosine. The concentrations of guanosine and guanine that elicited xanthine oxidase-dependent trypanocidal activity were 30–270-fold lower than those of other purines requiring trypanosome-processing which suggests differential processing by the parasites.  相似文献   

17.
The pathophysiology of superoxide: roles in inflammation and ischemia   总被引:11,自引:0,他引:11  
The superoxide radical plays major roles in the neutrophil-medicated acute inflammatory response and in postischemic tissue injury, although the sources and actions of the radical are quite different in these two pathological states. While neutrophils produce superoxide for the primary purpose of aiding in the killing of ingested microbes, a second useful function has evolved. The superoxide released from actively phagocytosing neutrophils serves to attract more neutrophils by reacting with, and activating, a latent chemotactic factor present in plasma. Superoxide dismutase, by preventing the activation of this superoxide-dependent chemotactic factor, exerts potent anti-inflammatory action. During ischemia, energy-starved tissues catabolize ATP to hypoxanthine. Calcium transients in these cells appear to activate a calmodulin regulated protease which attacks the enzyme xanthine dehydrogenase, converting it to a xanthine oxidase capable of superoxide generation. When the tissue is reperfused and reoxygenated, all the necessary components are present (xanthine oxidase, hypoxanthine, and oxygen) to produce a burst of superoxide which results in extensive tissue damage. Ischemic tissues are protected by superoxide dismutase or allupurinol, an inhibitor of xanthine oxidase.  相似文献   

18.
The aim of this study was to test the hypothesis that allopurinol ingestion modifies the slow component of V(.)O(2) kinetics and changes plasma oxidative stress markers during severe intensity exercise. Six recreationally active male subjects were randomly assigned to receive a single dose of allopurinol (300 mg) or a placebo in a double-blind, placebo-controlled crossover design, with at least 7 days washout period between the two conditions. Two hours following allopurinol or placebo intake, subjects completed a 6-min bout of cycle exercise with the power output corresponding to 75 % V(.)O(2)max. Blood samples were taken prior to commencing the exercise and then 5 minutes upon completion. Allopurinol intake caused increase in resting xanthine and hypoxanthine plasma concentrations, however it did not affect the slow component of oxygen uptake during exercise. Exercise elevated plasma inosine, hypoxanthine, and xanthine. Moreover, exercise induced a decrease in total antioxidant status, and sulfhydryl groups. However, no interaction treatment x time has been observed. Short term severe intensity exercise induces oxidative stress, but xanthine oxidase inhibition does not modify either the kinetics of oxygen consumption or reactive oxygen species overproduction.  相似文献   

19.
Xanthine oxidoreductase (xanthine dehydrogenase + xanthine oxidase) is a complex enzyme that catalyzes the oxidation of hypoxanthine to xanthine, subsequently producing uric acid. The enzyme complex exists in separate but interconvertible forms, xanthine dehydrogenase and xanthine oxidase, which generate reactive oxygen species (ROS), a well known causative factor in ischemia/reperfusion injury and also in some other pathological states and diseases. Because the enzymes had not been localized in human corneas until now, the aim of this study was to detect xanthine oxidoreductase and xanthine oxidase in the corneas of normal post-mortem human eyes using histochemical and immunohistochemical methods. Xanthine oxidoreductase activity was demonstrated by the tetrazolium salt reduction method and xanthine oxidase activity was detected by methods based on cerium ion capture of hydrogen peroxide. For immunohistochemical studies. we used rabbit antibovine xanthine oxidase antibody, rabbit antihuman xanthine oxidase antibody and monoclonal mouse antihuman xanthine oxidase/xanthine dehydrogenase/aldehyde oxidase antibody. The results show that the enzymes are present in the corneal epithelium and endothelium. The activity of xanthine oxidoreductase is higher than that of xanthine oxidase, as clearly seen in the epithelium. Further studies are necessary to elucidate the role of these enzymes in the diseased human cornea. Based on the findings obtained in this study (xanthine oxidoreductase/xanthine oxidase activities are present in normal human corneas), we hypothesize that during various pathological states, xanthine oxidase-generated ROS might be involved in oxidative eye injury.  相似文献   

20.
《Mutation Research Letters》1993,301(4):243-248
The effect of histidine on damage induced by oxygen radicals was studied in peripheral blood lymphocytes treated with free oxygen radical-inducing agents: hydrogen peroxide, xanthine oxidase plus hypoxanthine, bleumycin and γ-rays. l-Histidine, at a concentration of 1 mM, was found to potentiate both cell killing and inhibition of PHA-stimulated cell division brought about by hydrogen peroxide or xanthine oxidase plus hypoxanthine. In contrast, l-histidine did not affect γ-ray- or bleomycin-induced cell killing and inhibition of PHA-stimulated cell division. We suggest that l-histidine potentiation of cell damage is mainly mediated by interaction of the amino acid with hydrogen peroxide and/or iron rather than with other reactive oxygen species. In addition, these results also indicate that hydrogen peroxide produced by γ-radiation- or bleomycin-treated cells plays no role in the toxic effects elicited by these agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号