首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3-isopropylmalate dehydrogenase (IPMDH) from Escherichia coli was overexpressed, purified and crystallized. The enzyme was characterized and compared to its thermophilic counterpart from Thermus thermophilus strain HB8. As in the thermophile enzyme, the activity of E. coli IPMDH was dependent on the divalent cations, Mg2+ or Mn2+, with Mn2+ being the preferred cation. Activity was also strongly influenced by KCl: 0.3 M were necessary for the optimal activity. At 40°C the Km of E. coli IPMDH was 105 μM for IPM and 321 μM for NAD, the kcat was 69 s−1. The half denaturationn temperature was 64°C, which was 20°C lower than that of the thermophile enzyme.  相似文献   

2.
Polyethylene glycol (PEG) 4000-utilizing bacterium no. 203 was identified as a Flavobacterium species. 2, 6-Dichlorophenol-indophenol (DCIP)-dependent PEG dehydrogenase was constitutively formed in nutrient broth, glucose and PEG media. However, the enzyme formation was repressed in the presence of an excess amount (over 0.25%) of PEG 400 or 1000. PEG dehydrogenase was purified approximately 34 fold by precipitation with ammonium sulfate, solubilization with benzalkonium chloride, chromatography with DEAE-Toyopearl 650 M and hydroxylapatite and gel filtration on Toyopearl HW-55. The molecular weight of the purified PEG dehydrogenase was calculated to be approximately 2.20 × 105, a value which seemed to consist of four subunits with the same molecular weight of 5.70 × 104. The enzyme was stable below 40°C and in the pH range of 7.0 and 8.0. The optimum pH and temperature of the activity were around 8.0 and 40°C, respectively. The enzyme reduced DCIP and coenzyme Q1 and Q2. PEG dehydrogenase showed activity toward various PEG molecules (dimer-PEG 20,000). The apparent Km values for PEG 400, 1000, 4000 and 6000 were about 1.0, 1.7, 2.8 and 5.9 mM, respectively. The enzyme oxidized primary aliphatic alcohols of C3–C12, the corresponding aldehydes of C3–C7, aromatic alcohols and aldehydes, diols, etc. The enzyme was inactive on ethylene glycol, glycerol, secondary alcohols and sugar alcohols. The enzyme activity was strongly inhibited by sulfhydryl agents or heavy metals and 1, 4-benzoquinone. The purified enzyme showed absorption apectrum similar to that of PEG 6000 dehydrogenase which has already been reported to be a quinoprotein. The prosthetic group of the enzyme was extracted with methanol and identified as PQQ from its prosthetic group capability for glucose dehydrogenase and the fluorescence spectrum.  相似文献   

3.
Pteris vittata is known as an arsenic hyperaccumulator, but there is little information about its tolerance to cadmium and on its ability to accumulate this heavy metal. Our aim was to analyse the accumulation capacity, oxidative stress and antioxidant response of this fern after cadmium treatments. Cadmium content, main markers of oxidative stress and antioxidant response were detected in leaves of plants grown in hydroponics for both short- (5 days) and long- (15 days) term exposure to 0 (control) 60 and 100 μM CdCl2. In leaves, the concentration of cadmium and oxidative stress were parallel with the increase of cadmium exposure. In the short-term exposure, antioxidant response was sufficient to contrast cadmium phytotoxicity only in 60 μM cadmium-treated plants. In the long-term exposure all treated plants, in spite of the increase in activity of some peroxide-scavenging enzymes, showed a significant increase in oxidative damage. As in the long-term stress markers were comparable in all treated plants, with no clear correlation with hydrogen peroxide content, at least part of cadmium-induced oxidative injury seems not mediated by H2O2. Based on our studies, P. vittata, able to uptake relatively high concentrations of cadmium, is only partially tolerant to this heavy metal.  相似文献   

4.
L-Amino acid oxidase (L-AAO) was purified from the solid state-grown cultures of A. oryzae ASH (JX006239.1) by fractional salting out, followed by ion exchange and gel filtration chromatography, to its molecular homogeneity, displaying 3.38-fold purification in comparison with the crude enzyme. SDS-PAGE revealed the enzyme to be a homo-dimer with ~55-kDa subunits, with approximate molecular weight on native PAGE of 105–110 kDa. Two absorption maxima, at 280 nm and 341 nm, for the apoproteinic and FMN prosthetic group of the enzyme, respectively, were observed, with no detected surface glycosyl residues. The enzyme had maximum activity at pH 7.8–8.0, with ionic structural stability within pH range 7.2–7.6 and pH precipitation point (pI) 4.1–5.0. L-AAO exhibited the highest activity at 55°C, with plausible thermal stability below 40°C. The enzyme had T 1/2 values of 21.2, 8.3, 3.6, 3.1, 2.6 h at 30, 35, 40, 50, 60°C with Tm 61.3°C. Kinetically, A. oryzae L-AAO displayed a broad oxidative activity for tested amino acids as substrates. However, the enzyme had a higher affinity towards basic amino acid L-lysine (K m 3.3 mM, K cat 0.04 s?1) followed by aromatic amino acids L-tyrosine (K m 5.3 mM, K cat 0.036 s?1) and L-phenylalanine (K m 6.6 mM), with 1ow affinity for the S-amino acid L-methionine (K m 15.6 mM). The higher specificity of A. oryzae L-AAO to L-lysine as substrate seems to be a unique property comparing to this enzyme from other microbes. The enzyme was significantly inhibited by hydroxylamine and SDS, with slight inhibition by EDTA. The enzyme had a little effect on AST and ALT, with no effect on platelet aggregation and blood hemolysis in vivo with an obvious cytotoxic effect towards HepG2 (IC50 832.2 μg/mL) and MCF-7 (IC50, 370.6 μg/mL) tumor cells in vitro.  相似文献   

5.
Mannitol dehydrogenase (mannitol: NADP+ 2-oxidoreductase: EC 1.1.1.138) was isolated from Agaricus bisporus by fractionation with protamine sulphate and (NH4)2SO4, followed by chromatography on DEAE-Sephadex, then by affinity and gel chromatography. The products of enzyme reaction were identified by GLC and TLC. Km, optimum pH, MW and pI of the enzyme as well as the influence of temperature, ions and inhibitors on enzymic activity were determined. In the sugar reducing reaction, the enzyme was specific for fructose but, in the reverse direction, some structurally related polyols could substitute for mannitol. The enzyme was very sensitive to alterations in the NADP+/NADPH ratio. The results are discussed in relation to the possible role of mannitol dehydrogenase in fungal metabolism.  相似文献   

6.
Enzymatic studies have been performed on a local strain of Aspergillus niger to find a correlation with citric acid accumulation. The activity of aconitase [aconitate hydratase, citrate(isocitrate) hydrolyase, EC 4.2.1.3] and isocitrate dehydrogenase (NADP+) [threo-ds-isocitrate:NADP+ oxidoreductase (decarboxylating) EC 1.1.1.42] decreased after 4 days whereas that of citrate synthase [citrate oxaloacetate-lyase (pro-3S-CH2COO?acetylCoA), EC 4.1.3.7] did so after 8 days, when citric acid accumulation in the medium reached a maximum (45.9 mg ml?1). In vitro studies with mycelial cell-free extracts demonstrated inhibition of citrate synthase activity by sodium azide and potassium ferricyanide on both the 4th and 8th days. Aconitase was inhibited by sodium arsenate, sodium fluoride, iodoacetic acid and potassium ferricyanide only on the 4th day. Isocitrate dehydrogenase (NADP+) activity on the 4th and 8th days was inhibited by iodoacetic acid but was stimulated by potassium ferricyanide. The possible existence of isozyme species of these enzymes is discussed.  相似文献   

7.
《Free radical research》2013,47(1):601-607
Exposure of Lemma sp. to SO2 resulted in an increased activity of superoxide dismutase. About 3 to 4 fold increase in the activity was observed within 30 minutes after the plants were fumigated with 10 ml/l of SO2. Paraquat, a well known superoxide generator, doubled the enzyme activity after 1 hour of treatment with 0.1 mM paraquat. Superoxide dismutase activity was also enhanced by cadmium treatment but the response was not immediate. Optimum increase in the activity of enzyme was observed after 4 days of treatment with 40 mg/l of cadmium in the medium. Treatment with H2O2 very clearly inhibited the activity of superoxide dismutase in Lemna.  相似文献   

8.
The malic dehydrogenase (MDH2, l-malate: NAD oxidoreductase, E.C. 1,1.1.37) of Trichomonas gallinae was purified 215-fold and characterized. The molecular weight was found to be 72,000 and the enzyme protein contained essential cations and sulfhydryl groups. Polyacrylamide gel electrophoresis before and after extensive purification yielded a single band of malic dehydrogenase activity strongly suggesting only one molecular form of the enzyme. Analysis of kinetic data yielded the following Km values: oxalocetate, 16 μM; malate, 200 μM; NADH 11 μM; and NAD, 70 μM. The enzyme was absolutely specific for l-malic acid, NAD, and NADH. The enzyme exhibited a broad band of heat stability with an optimum of 51 C. The pH optimum in the direction of oxalacetate reduction was 9.0. The pH optima in the reverse direction were 9.0 and 10.5 A role for this enzyme in T. gallinae metabolism is discussed.  相似文献   

9.
Impact of exogenous calcium and ethylene glycol tetraacetic acid (EGTA) supplement on chickpea (Cicer arietinum L.) germinating seeds exposed to cadmium stress for 6 days was studied. Ca and EGTA late treatment (3 days) alleviated growth inhibition and decreased Cd accumulation as well as lipid peroxidation and protein carbonylation in both root and shoot cells. Exogenous effector application relieved Cd-induced cell death which was associated with a constant level of ATP, which was considered as an apoptotic-like process. Redox balance was examined through the study of the redox state of pyridine nucleotide couples NAD+/NADH and NADP+/NADPH as well as their related oxidative [NAD(P)H-oxidase] and dehydrogenase (glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and malate dehydrogenase) enzyme activities. The present research illustrated an ameliorative effect of Ca and EGTA on growth of Cd-exposed chickpea seedlings that occurs through the protection of sensitive cell sites from Cd-induced oxidation, namely membrane lipids and proteins, rather than the improvement of recycling capabilities of the cellular reducing power.  相似文献   

10.
Substrate inhibition of chicken lactate dehydrogenase (EC 1.1.1.27) isoenzyme 5, was studied with the enzyme in the soluble phase and bound to muscle subcellular particulate structures. Inhibition studies were performed by incubating bound or soluble enzyme with NAD+ prior to measuring the reaction with a stopped-flow technique at 40 °C and a concentration of enzyme of 10?7m. The value of V for soluble lactate dehydrogenase was 610 nmoles per sec, and for the bound enzyme it was 262. km (pyruvate) values were similar for both enzymes. Under our experimental conditions, up to 73% inhibition of the soluble enzyme was observed. On the other hand, there was no detectable inhibition of bound lactate dehydrogenase. It is suggested that the resistance to substrate inhibition of bound lactate dehydrogenase may possibly be due to the prevention of dissociation of the enzyme into monomeric or other subunits because of attachment to the particulate structures.  相似文献   

11.
Aluminum (Al) triggered a marked increase in reactive oxygen species (ROS) such as O2 and H2O2 in Pseudomonas fluorescens. Although the Al-stressed cells were characterized with higher amounts of oxidized lipids and proteins than controls, NADPH production was markedly increased in these cells. Blue native polyacrylamide gel electrophoresis (BN-PAGE) analyses coupled with activity and Coomassie staining revealed that NADP+ -dependent isocitrate dehydrogenase (ICDH, E.C. 1.1.1.42) and glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) played a pivotal role in diminishing the oxidative environment promoted by Al. These enzymes were overexpressed in the Al-tolerant microbes and were modulated by the presence of either Al or hydrogen peroxide (H2O2) or menadione. The activity of superoxide dismutase (SOD, E.C. 1.15.1.1), an enzyme known to combat ROS stress was also increased in the cells cultured in millimolar amounts of Al. Hence, Al-tolerant P. fluorescens invokes an anti-oxidative defense strategy in order to survive.  相似文献   

12.
Lactate dehydrogenase (LDH) activity in attached roots of barley and other cereals increased up to 20-fold during several days of severe hypoxia, reaching a maximum of about 2 micromoles per minute per gram fresh weight. In barley, induction of LDH activity was significant at 2.6% O2 and greatest at 0.06%, the lowest O2 concentration tested. Upon return to aerobic conditions, induced LDH activity declined with an apparent half-life of 2 days. The isozyme profile of barley LDH comprised 5 bands, consistent with a tetrameric enzyme with subunits encoded by two different Ldh genes. Changes in staining intensity of the isozymes as a function of O2 level suggested that one Ldh gene was preferentially expressed in severe hypoxia. When tracer [U-14C]glucose was supplied to induced roots under hypoxic conditions, lactate acquired label, but much less than either ethanol or alanine. Most of the [14C] lactate was secreted into the medium, whereas most other labeled anionic products were retained in the root. Neither hypoxic induction of LDH, nor lactate secretion by induced roots, is predicted from the Davies-Roberts hypothesis, which holds that lactate glycolysis ceases soon after the onset of hypoxia due to acidosis brought about by lactate accumulation in the cytoplasm. These results imply a functional significance for LDH beyond that assigned it in this hypothesis.  相似文献   

13.
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with NAD(P) as a cofactor in the tricarboxylic acid cycle. As a housekeeping protein in Helicobacter pylori, IDH was considered as a possible candidate for serological diagnostics and detection. Here, we identified a new icd gene encoding IDH from H. pylori strain SS1. The recombinant H. pylori isocitrate dehydrogenase (HpIDH) was cloned, expressed, and purified in E. coli system. The enzymatic characterization of HpIDH demonstrates its activity with k cat of 87 s?1, K m of 124 μM and k cat/K m of 7 × 105 M?1s?1 toward isocitrate, k cat of 80 s?1, K m of 176 μM and k cat/K m of 4.5 × 105 M?1s?1 toward NADP. The optimum pH of the enzyme activity is around 9.0, and the optimum temperature is around 50 °C. This current work is expected to help better understand the features of HpIDH and provide useful information for H. pylori serological diagnostics and detection.  相似文献   

14.
The accumulation of cadmium, copper and lead and their effects on aspartate and alanine aminotransferases in digestive gland, gills, foot and soft body in the clam Ruditapes philippinarum were examined. The animals were exposed to different concentrations: Cd (200–600 μg·l−1), Pb (350–700 μg·l−1) and Cu (10–20 μg·l−1) for 7 days. The highest concentrations were found in digestive gland for cadmium and copper, and in gills for lead, and the lowest values were observed in the foot. Aspartate aminotransferase activity (AST), in general, was not inhibited by cadmium, lead or copper during the exposure. Only in clams exposed to cadmium (600 μg·l−1, 7 days) and copper (20 μg·l−1, 5 days) were observed significant differences (P<0.05) in foot and gills, respectively, with respect to control. In the case of alanine aminotransferase activity (ALT), significant differences were observed for cadmium and lead in treated animals with respect to control. With regard to copper, a decrease in ALT was observed in gills and foot exposed to 20 μg·l−1. A significant correlation (P<0.05) was observed between ALT and metal accumulation for cadmium, copper and lead in gills. In the case of soft body, only cadmium and lead showed a significant correlation. In summary, R. philippinarum can be considered a bioindicator species for cadmium and lead accumulation and ALT could be useful as biomarker of sublethal stress for these metals in soft tissues and gills. Only gills can be considered an adequate target tissue for copper.  相似文献   

15.
The oxidative status of liver of female rats exposed to lead acetate and cadmium acetate either alone or in combination at a dose of 0.05?mg/kg body wt intraperitoneally for 15 days was studied. After the administration of lead alone, the activity of superoxide dismutase (SOD) decreased in liver, whereas no changes were observed in catalase (CAT) activity, and glutathione (GSH) and thiobarbituric acid (TBARS) levels. Cadmium exposure and combined exposure to lead and cadmium led to decrease in GSH content and increased TBARS levels. Moreover, animals exposed to either cadmium alone or in combination with lead showed a decrease in SOD activity and an increase in CAT activity. The in vitro experiments showed that vitamin E failed to restore the antioxidant enzyme activities in metal treated postmitochondrial supernatant fraction of liver. But Mn2+ ions protected the mitochondria from lipid peroxidation and could completely restore Mn-superoxide dismutase (Mn-SOD) activity following metal intoxication. The results of this study indicate that despite the ability of lead and cadmium to induce oxidative stress the effect in liver is not intensified by combined exposure to both lead and cadmium. The observed changes in various oxidative stress parameters in the liver of rats co-exposed to lead and cadmium may result from an independent effect of lead and /cadmium and also from their interaction such as changes in metal accumulation and content of essential elements like Cu, Zn and Fe. These results suggest that when lead and cadmium are present together in similar concentrations, cadmium mediates major effects due to its more reactive nature.  相似文献   

16.
A mathematical model based on kinetic data taken from the literature is presented for the pentose phosphate pathway in fasted rat liver steady-state. Since the oxidative and non oxidative pentose phosphate pathway can act independently, the complete (oxidative + non oxidative) and the non oxidative pentose pathway were simulated.Sensitivity analyses are reported which show that the fluxes are mainly regulated by D-glucose-6-phosphate dehydrogenase (for the oxidative pathway) and by transketolase (for the non oxidative pathway). The most influent metabolites were the group ATP, ADP, P1 and the group NADPH, NADP+ (for the non oxidative pathway).Abbreviations GK Glucokinase, (E.C. 2.7.1.2.) - G6PDH D-glucose-6-phosphate dehydrogenase, (E.C. 1.1.1.49) - PLase 6-Phosphogluconelactonase, (E.C. 3.1.1.31.) - PGIcDH 6-Phosphogluconate dehydrogenase, (E.C. 1.1.1.44) - RPI D-ribose-5-phosphate keto-isomerase, (E.C. 5.3.1.6) - TK D-sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate glycol-aldehyde transferase, (E.C. 2.2.1.1.) - TA D-sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate dihydroxyacetone transferase, (E.C. 2.2.1.2) - EP D-ribulose-5-phosphate-3-epimerase, (E.C. 5.1.3.1) - PGI D-glucose-6-phosphate keto-isomerase, (E.C. 5.3.1.9) - TPI D-glyceraldehyde-3-phosphate keto-isomerase, (E.C.5.3.1.1)  相似文献   

17.
Ubiquitin (Ub)-conjugating enzyme (UBC, E2) receives Ub from Ub-activating enzyme (E1) and transfers it to target proteins, thereby playing a key role in Ub/26S proteasome-dependent proteolysis. UBC has been reported to be involved in tolerating abiotic stress in plants, including drought, salt, osmotic and water stresses. To isolate the genes involved in Cd tolerance, we transformed WT (wild-type) yeast Y800 with a tobacco cDNA expression library and isolated a tobacco cDNA, NtUBC1 (Ub-conjugating enzyme), that enhances cadmium tolerance. When NtUBC1 was over-expressed in tobacco, cadmium tolerance was enhanced, but the Cd level was decreased. Interestingly, 20S proteasome activity was increased and ubiquitinated protein levels were diminished in response to cadmium in NtUBC1 tobacco. By contrast, proteasome activity was decreased and ubiquitinated protein levels were slightly enhanced by Cd treatment in control tobacco, which is sensitive to Cd. Moreover, the oxidative stress level was induced to a lesser extent by Cd in NtUBC1 tobacco compared with control plants, which is ascribed to the higher activity of antioxidant enzymes in NtUBC1 tobacco. In addition, NtUBC1 tobacco displayed a reduced accumulation of Cd compared with the control, likely due to the higher expression of CAX3 (Ca2+/H+ exchanger) and the lower expression of IRT1 (iron-responsive transporter 1) and HMA-A and -B (heavy metal ATPase). In contrast, atubc1 and atubc1atubc2 Arabidopsis exhibited lower Cd tolerance and proteasome activity than WT. In conclusion, NtUBC1 expression promotes cadmium tolerance likely by removing cadmium-damaged proteins via Ub/26S proteasome-dependent proteolysis or the Ub-independent 20S proteasome and by diminishing oxidative stress through the activation of antioxidant enzymes and decreasing Cd accumulation due to higher CAX3 and lower IRT1 and HMA-A/B expression in response to 50 µM Cd challenge for 3 weeks.  相似文献   

18.
The cDNA gene coding for formate dehydrogenase (FDH) from Ogataea parapolymorpha DL-1 was cloned and expressed in Escherichia coli. The recombinant enzyme was purified by nickel affinity chromatography and was characterized as a homodimer composed of two identical subunits with approximately 40 kDa in each monomer. The enzyme showed wide pH optimum of catalytic activity from pH 6.0 to 7.0. It had relatively high optimum temperature at 65 °C and retained 93, 88, 83, and 71 % of its initial activity after 4 h of exposure at 40, 50, 55, and 60 °C, respectively, suggesting that this enzyme had promising thermal stability. In addition, the enzyme was characterized to have significant tolerance ability to organic solvents such as dimethyl sulfoxide, n-butanol, and n-hexane. The Michaelis–Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat/K m) values of the enzyme for the substrate sodium formate were estimated to be 0.82 mM, 2.32 s?1, and 2.83 mM?1 s?1, respectively. The K m for NAD+ was 83 μM. Due to its wide pH optimum, promising thermostability, and high organic solvent tolerance, O. parapolymorpha FDH may be a good NADH regeneration catalyst candidate.  相似文献   

19.
Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD+/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD+ activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat.  相似文献   

20.
The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. l-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP+-dependent enzymes from chloroplasts and was separated from the NAD+-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis–Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD+ increased with pH but there was very little activity with NADP+. At pH 7.0, the K m for l-malate was 5 mM and the K m for NAD+ was 24 μM. The reductive activity was quite insensitive to inhibition by l-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10–20 times higher than the oxidative activity. These results indicate that the l-malate dehydrogenase in N. europaea is similar to other NAD+-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号