首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Acidovorax (formerly Pseudomonas) sp. strain JS42 utilizes 2-nitrotoluene as sole carbon, nitrogen, and energy source. 2-Nitrotoluene 2,3-dioxygenase (2NTDO) catalyzes the initial step in 2-nitrotoluene degradation by converting 2-nitrotoluene to 3-methylcatechol. In this study, we identified specific amino acids at the active site that control specificity. The residue at position 350 was found to be critical in determining both the enantiospecificity of 2NTDO with naphthalene and the ability to oxidize the ring of mononitrotoluenes. Substitution of Ile350 by phenylalanine resulted in an enzyme that produced 97% (+)-(1R, 2S)-cis-naphthalene dihydrodiol, in contrast to the wild type, which produced 72% (+)-(1R, 2S)-cis-naphthalene dihydrodiol. This substitution also severely reduced the ability of the enzyme to produce methylcatechols from nitrotoluenes. Instead, the methyl group of each nitrotoluene isomer was preferentially oxidized to form the corresponding nitrobenzyl alcohol. Substitution of a valine at position 258 significantly changed the enantiospecificity of 2NTDO (54% (−)-(1S, 2R)-cis-naphthalene dihydrodiol formed from naphthalene) and the ability of the enzyme to oxidize the aromatic ring of nitrotoluenes. Based on active site modeling using the crystal structure of nitrobenzene 1,2 dioxygenase from Comamonas sp. JS765, Asn258 appears to contribute to substrate specificity through hydrogen bonding to the nitro group of nitrotoluenes.  相似文献   

2.
Abstract Inducible (1 R ,2 S )-1,2-dihydroxy-3,5-cyclohexadiene-l,4-dicarboxylate (diene-diol) dehydrogenase was found in extracts of Comamonas testosteroni T-2 grown in p -toluate-or terephthalate-salts medium and it was purified using anion exchange, hydrophobic interaction and gel filtration chromatography. The enzyme is a homodimer with subunit M r 39000. It had a specific activity of 500 mkat/kg of protein and was activated by the addition of Fe2+. The dehydrogenase converted 1 mol diene-diol and 1 mol NAD+ to 1 mol protocatechuic acid, 1 mol NADH and 1 mol CO2. Apparent K m-values of 43 μM (NAD+) and about 90 μM (diene-diol) were determined. The hydride ion was transferred to the si face of NAD+.  相似文献   

3.
3-Nitotoluene dioxygenase (3-NTDO) is the first enzyme in the degradation pathway of 3-nitrotoluene (3-NT) by Diaphorobacter sp. strain DS2. The complete gene sequences of 3-NTDO were PCR amplified from genomic DNA of Diaphorobacter sp., cloned, sequenced and expressed. The 3-NTDO gene revealed a multi component structure having a reductase, a ferredoxin and two oxygenase subunits. Clones expressing the different subunits were constructed in pET21a expression vector system and overexpressed in E. coli BL21(DE3) host. Each subunit was individually purified separately to homogeneity. The active recombinant enzyme was reconstituted in vitro by mixing all three purified subunits. The reconstituted recombinant enzyme could catalyse biotransformations on a variety of organic aromatics.  相似文献   

4.
Caspase-2, the most evolutionarily conserved member in the human caspase family, may play important roles in stress-induced apoptosis, cell cycle regulation, and tumor suppression. In biochemical assays, caspase-2 uniquely prefers a pentapeptide (such as VDVAD) rather than a tetrapeptide, as required for efficient cleavage by other caspases. We investigated the molecular basis for pentapeptide specificity using peptide analog inhibitors and substrates that vary at the P5 position. We determined the crystal structures of apo caspase-2, caspase-2 in complex with peptide inhibitors VDVAD-CHO, ADVAD-CHO, and DVAD-CHO, and a T380A mutant of caspase-2 in complex with VDVAD-CHO. Two residues, Thr-380 and Tyr-420, are identified to be critical for the P5 residue recognition; mutation of the two residues reduces the catalytic efficiency by about 4- and 40-fold, respectively. The structures also provide a series of snapshots of caspase-2 in different catalytic states, shedding light on the mechanism of capase-2 activation, substrate binding, and catalysis. By comparing the apo and inhibited caspase-2 structures, we propose that the disruption of a non-conserved salt bridge between Glu-217 and the invariant Arg-378 is important for the activation of caspase-2. These findings broaden our understanding of caspase-2 substrate specificity and catalysis.  相似文献   

5.
Sphingobium yanoikuyae B1 initiates the catabolism of biphenyl by adding dioxygen to the aromatic nucleus to form (+)-cis-(2R, 3S)-dihydroxy-1-phenylcyclohexa-4,6-diene. The present study focuses on the biphenyl 2,3-dioxygenase system, which catalyzes the dioxygenation reaction. This enzyme has been shown to have a broad substrate range, catalyzing the dioxygenation of not only biphenyl, but also three- and four-ring polycyclic aromatic hydrocarbons. Extracts prepared from biphenyl-grown B1 cells contained three protein components that were required for the oxidation of biphenyl. The genes encoding the three components (bphA4, bphA3 and bphA1f,A2f) were expressed in Escherichia coli. Biotransformations of biphenyl, naphthalene, phenanthrene, and benzo[a]pyrene as substrates using the recombinant E. coli strain resulted in the formation of the expected cis-dihydrodiol products previously shown to be produced by biphenyl-induced strain B1. The three protein components were purified to apparent homogeneity and characterized in detail. The reductase component (bphA4), designated reductase(BPH-B1), was a 43 kD monomer containing one mol FAD/mol reductase(BPH-B1). The ferredoxin component (bphA3), designated ferredoxin(BPH-B1), was a 12 kD monomer containing approximately 2 g-atoms each of iron and acid-labile sulfur. The oxygenase component (bphA1f,A2f), designated oxygenase(BPH-B1), was a 217 kD heterotrimer consisting of alpha and beta subunits (approximately 51 and 21 kD, respectively). The iron and acid-labile sulfur contents of oxygenase(BPH-B1) per alphabeta were 2.4 and 1.8 g-atom per mol, respectively. Reduced ferredoxin(BPH-B1) and oxygenase(BPH-B1) each gave EPR signals typical of Rieske [2Fe-2S] proteins. Crystals of reductase(BPH-B1), ferredoxin(BPH-B1) and oxygenase(BPH-B1 )diffracted to 2.5 A, 2.0 A and 1.75 A, respectively. The structures of the three proteins are currently being determined.  相似文献   

6.
Microbial degradation of phthalic acid (PA) and dimethyl phthalate ester (DMPE) under aerobic conditions was investigated using a pure species of bacteria and two consortia from sewage sludge. Five morphologically distinct microorganisms were obtained in pure culture and identified, and tested for the capability of degrading phthalate and DMPE. Comamonas acidovorans strain Fy-1 showed the highest ability to degrade high concentrations of phthalate (2600 mg/l) within 48 h. Two reconstituted consortia of microorganisms, one comprising Pseudomonas fluorescens, P. aureofaciens and Sphingomonas paucimobilis, and the other of Xanthomonas maltophilia and S. paucimobilis, were effective in completely degrading DMPE (400 mg/l) in 48–96 h. The three-species consortium appeared to be more effective in the degradation of DMPE, and both consortia proceeded via formation of mono-methyl phthalate (MMP) and then phthalatic acid before mineralization. This study suggests that high concentrations of the endocrine-disrupting chemicals phthalate and DMPE can be mineralized in wastewater treatment systems by indigenous microorganisms.  相似文献   

7.
α‐Dioxygenases (α‐DOX) are heme‐containing enzymes found predominantly in plants and fungi, where they generate oxylipins in response to pathogen attack. α‐DOX oxygenate a variety of 14–20 carbon fatty acids containing up to three unsaturated bonds through stereoselective removal of the pro‐R hydrogen from the α‐carbon by a tyrosyl radical generated via the oxidation of the heme moiety by hydrogen peroxide (H2O2). We determined the X‐ray crystal structures of wild type α‐DOX from Oryza sativa, the wild type enzyme in complex with H2O2, and the catalytically inactive Y379F mutant in complex with the fatty acid palmitic acid (PA). PA binds within the active site cleft of α‐DOX such that the carboxylate forms ionic interactions with His‐311 and Arg‐559. Thr‐316 aids in the positioning of carbon‐2 for hydrogen abstraction. Twenty‐five of the twenty eight contacts made between PA and residues lining the active site occur within the carboxylate and first eight carbons, indicating that interactions within this region of the substrate are responsible for governing selectivity. Comparison of the wild type and H2O2 structures provides insight into enzyme activation. The binding of H2O2 at the distal face of the heme displaces residues His‐157, Asp‐158, and Trp‐159 ~2.5 Å from their positions in the wild type structure. As a result, the Oδ2 atom of Asp‐158 interacts with the Ca atom in the calcium binding loop, the side chains of Trp‐159 and Trp‐213 reorient, and the guanidinium group of Arg‐559 is repositioned near Tyr‐379, poised to interact with the carboxylate group of the substrate.  相似文献   

8.
  1. Download : Download high-res image (247KB)
  2. Download : Download full-size image
  相似文献   

9.
10.
  1. Download : Download high-res image (135KB)
  2. Download : Download full-size image
  相似文献   

11.
Gox2253 from Gluconobacter oxydans belongs to the short‐chain dehydrogenases/reductases family, and catalyzes the reduction of heptanal, octanal, nonanal, and decanal with NADPH. To develop a robust working platform to engineer novel G. oxydans oxidoreductases with designed coenzyme preference, we adopted a structure based rational design strategy using computational predictions that considers the number of hydrogen bonds formed between enzyme and docked coenzyme. We report the crystal structure of Gox2253 at 2.6 Å resolution, ternary models of Gox2253 mutants in complex with NADH/short‐chain aldehydes, and propose a structural mechanism of substrate selection. Molecular dynamics simulation shows that hydrogen bonds could form between 2′‐hydroxyl group in the adenosine moiety of NADH and the side chain of Gox2253 mutant after arginine at position 42 is replaced with tyrosine or lysine. Consistent with the molecular dynamics prediction, Gox2253‐R42Y/K mutants can use both NADH and NADPH as a coenzyme. Hence, the strategies here could provide a practical platform to engineer coenzyme selectivity for any given oxidoreductase and could serve as an additional consideration to engineer substrate‐binding pockets. Proteins 2014; 82:2925–2935. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The intracellular protozoan Toxoplasma gondii is among the most widespread parasites. The broad host cell range of the parasite can be explained by carbohydrate microarray screening analyses that have demonstrated the ability of the T. gondii adhesive protein, TgMIC1, to bind to a wide spectrum of sialyl oligosaccharide ligands. Here, we investigate by further microarray analyses in a dose-response format the differential binding of TgMIC1 to 2-3- and 2-6-linked sialyl carbohydrates. Interestingly, two novel synthetic fluorinated analogs of 3′SiaLacNAc1–4 and 3′SiaLacNAc1–3 were identified as highly potent ligands. To understand the structural basis of the carbohydrate binding specificity of TgMIC1, we have determined the crystal structures of TgMIC1 micronemal adhesive repeat (MAR)-region (TgMIC1-MARR) in complex with five sialyl-N-acetyllactosamine analogs. These crystal structures have revealed a specific, water-mediated hydrogen bond network that accounts for the preferential binding of TgMIC1-MARR to arrayed 2-3-linked sialyl oligosaccharides and the high potency of the fluorinated analogs. Furthermore, we provide strong evidence for the first observation of a C—F···H—O hydrogen bond within a lectin-carbohydrate complex. Finally, detailed comparison with other oligosaccharide-protein complexes in the Protein Data Bank (PDB) reveals a new family of sialic-acid binding sites from lectins in parasites, bacteria, and viruses.  相似文献   

13.
OPTN (optineurin), a ubiquitin-binding scaffold protein, functions as an important macroautophagy/autophagy receptor in selective autophagy processes. Mutations in OPTN have been linked with human neurodegenerative diseases including ALS and glaucoma. However, the mechanistic basis underlying the recognition of ubiquitin by OPTN and its regulation by TBK1-mediated phosphorylation are still elusive. Here, we demonstrate that the UBAN domain of OPTN preferentially recognizes linear ubiquitin chain and forms an asymmetric 2:1 stoichiometry complex with the linear diubiquitin. In addition, our results provide new mechanistic insights into how phosphorylation of UBAN would regulate the ubiquitin-binding ability of OPTN and how disease-associated mutations in the OPTN UBAN domain disrupt its interaction with ubiquitin. Finally, we show that defects in ubiquitin-binding may affect the recruitment of OPTN to linear ubiquitin-decorated mutant Huntington protein aggregates. Taken together, our findings clarify the interaction mode between UBAN and linear ubiquitin chain in general, and expand our knowledge of the molecular mechanism of ubiquitin-decorated substrates recognition by OPTN as well as the pathogenesis of neurodegenerative diseases caused by OPTN mutations.  相似文献   

14.
15.
The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however, the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines. Evaluation of the relative importance of different residues positioned −2, −1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the −1 and −2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the −2, −1, +1 and +2 sites surrounding K11 and K63 to mimic those surrounding K48 did not improve their ubiquitination, indicating that further determinants are important for Ub K48 specificity. Modeling the ternary structure of acceptor Ub with the Cdc34~Ub complex as well as in vitro ubiquitination assays unveiled the importance of K6 and Q62 of acceptor Ub for Ub K48 polyubiquitination. These findings provide molecular and structural insight into substrate lysine and Ub K48 specificity by Cdc34.  相似文献   

16.
BCman, a β-mannanase from the plant root beneficial bacterium Bacillus subtilis Z-2, has a potential to be used in the production of mannooligosaccharide, which shows defense induction activity on both melon and tobacco, and plays an important role in the biological control of plant disease. Here we report the biochemical properties and crystal structure of BCman-GH26 enzyme. Kinetic analysis reveals that BCman is an endo-β-mannanase, specific for mannan, and has no activity on mannooligosaccharides. The catalytic acid/base Glu167 and nucleophile Glu266 are positioned on the β4 and β7 strands, respectively. The 1.45-Å crystal structure reveals that BCman is a typical (β/α)8 folding type. One large difference from the saddle-shaped active center of other endo-β-mannanases is the presence of a shallow-dish-shaped active center and substrate-binding site that are both unique to BCman. These differences are mainly due to important changes in the length and position of loop 1 (Phe37-Met47), loop 2 (Ser103-Ala134), loop3 (Phe162-Asn185), loop 4 (Tyr215-Ile236), loop 5 (Pro269-Tyr278), and loop 6 (Trp298-Gly309), all of which surround the active site. Data from isothermal titration calorimetry and crystallography indicated only two substrate-binding subsites (+ 1 and − 1) within the active site of BCman. These two sites are involved in the enzyme's mannan degradation activity and in restricting the binding capacity for mannooligosaccharides. Binding and catalysis of BCman to mannan is mediated mainly by a surface containing a strip of solvent-exposed aromatic rings of Trp302, Trp298, Trp172, and Trp72. Additionally, BCman contains a disulfide bond (Cys66Cys86) and a special His1-His23-Glu336 metal-binding site. This secondary structure is a key factor in the enzyme's stability.  相似文献   

17.
The iron‐sulfur protein 1 (Isu1) and the J‐type co‐chaperone Jac1 from yeast are part of a huge ATP‐dependent system, and both interact with Hsp70 chaperones. Interaction of Isu1 and Jac1 is a part of the iron‐sulfur cluster biogenesis system in mitochondria. In this study, the structure and dynamics of the yeast Isu1–Jac1 complex has been modeled. First, the complete structure of Isu1 was obtained by homology modeling using the I‐TASSER server and YASARA software and thereafter tested for stability in the all‐atom force field AMBER. Then, the known experimental structure of Jac1 was adopted to obtain initial models of the Isu1–Jac1 complex by using the ZDOCK server for global and local docking and the AutoDock software for local docking. Three most probable models were subsequently subjected to the coarse‐grained molecular dynamics simulations with the UNRES force field to obtain the final structures of the complex. In the most probable model, Isu1 binds to the left face of the Γ‐shaped Jac1 molecule by the β‐sheet section of Isu1. Residues L105, L109, and Y163 of Jac1 have been assessed by mutation studies to be essential for binding (Ciesielski et al., J Mol Biol 2012; 417:1–12). These residues were also found, by UNRES/molecular dynamics simulations, to be involved in strong interactions between Isu1 and Jac1 in the complex. Moreover, N95, T98, P102, H112, V159, L167, and A170 of Jac1, not yet tested experimentally, were also found to be important in binding. Proteins 2015; 83:1414–1426. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Human β‐2‐microglobulin (β2m) is the light chain of human leucocyte antigen‐I (HLA‐I). It can disassociate from HLA‐I and accumulate to cause serious dialysis‐related amyloidosis (DRA) in long‐term hemodialysis patients. Monoclonal antibody (mAb) BBM.1 can recognize both free‐form and HLA‐I associated β2m. It can be used for specific elimination of β2m from serum and can induce apoptosis of several types of tumor cells, and thus has great therapeutic potential. In this study, we constructed structural models of the BBM.1 Fv (fragment of the variable domain) and the BBM.1 Fv‐β2m complex, followed by biochemical evaluation. Analysis of the optimal complex model reveals that the previously identified immunodominant residues Glu44 and Arg45 of β2m have direct interactions with BBM.1, while Asp38 exerts its function mainly via stabilization of Arg45. In addition, Arg81 of β2m is a newly identified immunodominant residue to have direct interaction with BBM.1. Further modeling study shows no steric conflict between the antibody and the HLA‐I heavy chain. These results provide insights into the molecular basis of the recognition of β2m by BBM.1 and explain why BBM.1 can bind both free‐form and HLA‐1 associated β2m. This information could be exploited in the engineering and improvement of BBM.1 and the development of other β2m‐targeting mAbs for therapeutic purposes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号