首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the landmark contributions of Homer Smith and co-workers in the 1930s there has been a considerable advance in our knowledge regarding the osmoregulatory strategy of elasmobranch fish. Smith recognised that urea was retained in the body fluids as part of the ‘osmoregulatory ballast’ of elasmobranch fish so that body fluid osmolality is raised to a level that is iso- or slightly hyper-osmotic to that of the surrounding medium. From studies at that time he also postulated that many marine dwelling elasmobranchs were not capable of adaptation to dilute environments. However, more recent investigations have demonstrated that, at least in some species, this may not be the case. Gradual acclimation of marine dwelling elasmobranchs to varying environmental salinities under laboratory conditions has demonstrated that these fish do have the capacity to acclimate to changes in salinity through independent regulation of Na+, Cl and urea levels. This suggests that many of the presumed stenohaline marine elasmobranchs could in fact be described as partially euryhaline. The contributions of Thomas Thorson in the 1970s demonstrated the osmoregulatory strategy of a fully euryhaline elasmobranch, the bull shark, Carcharhinus leucas, and more recent investigations have examined the mechanisms behind this strategy in the euryhaline elasmobranch, Dasyatis sabina. Both partially euryhaline and fully euryhaline species utilise the same physiological processes to control urea, Na+ and Cl levels within the body fluids. The role of the gills, kidney, liver, rectal gland and drinking process is discussed in relation to the endocrine control of urea, Na+ and Cl levels as elasmobranchs acclimate to different environmental salinities.  相似文献   

2.
The distribution of different phospholipids and their variation in fatty acids composition were studied in mitochondrial fractions isolated from anterior and posterior gills of the two euryhaline crabs, Enocheir sinensis and Carcinus maenas, as a function of the environmental salinity. No matter what the salinity, the three more posterior located gills of E. sinensis were shown to contain more unsaturated phospholipids (PE, DPG) and more eicosapentaanoic acids (20:5ω 3) than the three more anterior ones. This was particularly significant when crabs were acclimatized to fresh water. The lipid content of the anterior and posterior gills of the seashore crab C. maenas, on the contrary, showed no significant differences. These results are discussed by taking into consideration the different osmo- and ion-regulation capabilities of the two euryhaline crabs studied and it is proposed that a possible viscotropic regulation might check the activity of membrane-bound enzymes among which the (Na+ + K+)-ATPase related to the Na+-active transport processes involved in maintaining Na+ balance.  相似文献   

3.
Cl absorption across isolated, perfused gills of freshwater adapted Chinese crabs (Eriocheir sinensis) was analysed by measuring transepithelial potential differences (PDte) and radioactive tracer fluxes across isolated, perfused posterior gills. Applying hemolymph-like NaCl salines on both sides of the epithelium PDte amounted to −30±1 mV (n=14). Undirectional Cl influxes of 470±38 and effluxes of 245±27 μmol·hr−1·g−1 wet weight (ww) (n=14) resulted in a Cl net influx of 226±31 μmol·hr−1·g−1 ww. Symmetrical substitution of Na+ by choline resulted in a substantial hyperpolarisation of the gill. Cl influx was unchanged under these conditions. However, net influx of Cl decreased by 40%, due to an increase of the Cl efflux.Nevertheless, a significant Cl net influx remained which was independent of the presence of Na+. When 2 mmol/l ouabain were added to the internal perfusion medium, PDte increased, although the fluxes remained unchanged. Following external application of 1μmol/l of the V-type H+-ATPase inhibitor bafilomycin, Al PDte and Cl effluxes were not significantly affected. However, Cl influxes decreased. These findings suggest that Cl can be taken up independently of Na+ and that active Na+ independent Cl uptake across the posterior gill of Eriocheir sinensis is probably driven by a V-type H+-ATPase localized in the apical membrane.  相似文献   

4.
Recently mercury pollution has been increased considerably in aquatic resources throughout the world and it is a growing global concern. In this study, the 96 h LC50 value of waterborne mercuric chloride for Cirrhinus mrigala was found to be 0.34 mg/L (with 95% confidence limits). Fingerlings of C. mrigala were exposed to 0.068 and 0.034 mg/L of mercuric chloride for 96 h to assess the Na+/K+-ATPase activity and ionoregulation (Na+, K+ and Cl?) in gill and brain. Results showed that Na+/K+-ATPase activity and ionic levels (Na+, K+ and Cl?) in gill and brain of fish exposed to different concentrations of mercuric chloride were found to be significantly (p < 0.05) decreased throughout the study period. Mercury inactivates many enzymes by attaching to sulfur atoms in which the enzyme Na+/K+-ATPase is highly sensitive to mercury. The inhibition of gill and brain Na+/K+-ATPase activity might have resulted from the physicochemical alteration of the membrane due to mercury toxicity. Moreover, inhibition of Na+/K+-ATPase may affect the ion transport and osmoregulatory function by blocking the transport of substances across the membrane by active transport. The present study indicates that the alterations in these parameters can be used in environmental biomonitoring of mercury contamination in aquatic ecosystem.  相似文献   

5.
Salinity is one of the key factors that affects metabolism, survival and distribution of fish species, as all fish osmoregulate and euryhaline fish maintain osmotic differences between their extracellular fluid and either freshwater or seawater. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations in both marine and freshwater environments, where the physiological and genomic basis for salinity tolerance adaptation is not fully understood. Therefore, our main objective in this study was to investigate gene expression of three targeted osmoregulatory genes (Na+/K+-ATPase (ATPA13), cystic fibrosis transmembrane regulator (CFTR) and a voltage gated potassium channel gene (KCNH4) and one stress related heat shock protein gene (HSP70)) in gill tissue from marine and freshwater populations when exposed to non-native salinity for periods ranging from five minutes to three weeks. Overall, the targeted genes showed highly plastic expression profiles, in addition the expression of ATP1A3 was slightly higher in saltwater adapted fish and KCNH4 and HSP70 had slightly higher expression in freshwater. As no pronounced changes were observed in the expression profiles of the targeted genes, this indicates that the osmoregulatory apparatuses of both the marine and landlocked freshwater stickleback population have not been environmentally canalized, but are able to respond plastically to abrupt salinity challenges.  相似文献   

6.
7.
8.
The ion regulation mechanisms of fishes have been recently studied in zebrafish (Danio rerio), a stenohaline species. However, recent advances using this organism are not necessarily applicable to euryhaline fishes. The euryhaline species medaka (Oryzias latipes), which, like zebrafish, is genetically well categorized and amenable to molecular manipulation, was proposed as an alternative model for studying osmoregulation during acclimation to different salinities. To establish its suitability as an alternative, the present study was conducted to (1) identify different types of ionocytes in the embryonic skin and (2) analyze gene expressions of the transporters during seawater acclimation. Double/triple in situ hybridization and/or immunocytochemistry revealed that freshwater (FW) medaka contain three types of ionocyte: (1) Na+/H+ exchanger 3 (NHE3) cells with apical NHE3 and basolateral Na+-K+-2Cl? cotransporter (NKCC), Na+-K+-ATPase (NKA) and anion exchanger (AE); (2) Na+-Cl? cotransporter (NCC) cells with apical NCC and basolateral H+-ATPase; and (3) epithelial Ca2+ channel (ECaC) cells [presumed accessory (AC) cells] with apical ECaC. On the other hand, seawater (SW) medaka has a single predominant ionocyte type, which possesses apical cystic fibrosis transmembrane conductance regulator (CFTR) and NHE3 and basolateral NKCC and NKA and is accompanied by smaller AC cells that express lower levels of basolateral NKA. Reciprocal gene expressions of decreased NHE3, AE, NCC and ECaC and increased CFTR and NKCC in medaka gills during SW were revealed by quantative PCR analysis.  相似文献   

9.
The Chilean frog, Calyptocephallela gayi, placed in dilute NaCl solutions may pump Na+ and Cl- at very different rates depending on the kind of bath solutions in which it was preadapted. Furthermore, Na+ and Cl- may be absorbed from solutions in which the accompanying coion, such as sulfate and choline, respectively, is impermeant. In all these cases it is obligatory to postulate the existence of two ionic exchange mechanisms, Cl- and Na+, being exchanged against endogenous anions and cations, respectively. It has been determined that Na+ is exchanged against endogenous H+ and that Cl- is exchanged against HCO3-. In animals pumping Na+ and Cl- from dilute NaCl solutions Na+ or Cl- uptake may be selectively inhibited, while the flux of the accompanying ion remains unchanged. This is considered to be an additional proof that both Na+ and Cl- fluxes are always independent. The role of the ionic exchange mechanisms in the direct regulation of the Na+ and Cl- levels in the internal medium is discussed as well as their relationship in the regulation of the acid-base equilibrium; other physioecological considerations have been treated.  相似文献   

10.
Ehrlich ascites tumor cell membrane potential (Vm) and intracellular Na+, K+ and Cl activities were measured under steady-state conditions in normal saline medium (Na+ = 154, K+ = 6, Cl = 150 mequiv./l). Membrane potential was estimated to be −23.3 ± 0.8 mV using glass microelectrodes. Intracellular ion activities were estimated with similar glass electrodes rendered ion-selective by incorporation of ion-specific ionophores. Measurements of Vm and ion-activity differences were made in the same populations of cells. Under these conditions the intracellular Na+, K+ and Cl activities are 4.6 ± 0.5; 68.3 ± 8.0; and 43.6 ± 2.1 mequiv./l, respectively. The apparent activity coefficients for Na+ and K+ are 0.18 ± 0.02 and 0.41 ± 0.05 respectively. These are significantly lower than the activity coefficients expected for the ions in physiological salt solutions (0.71 and 0.73, respectively). The activity coefficient for intracellular Cl (0.67 ± 0.03), however, is close to that of the medium (0.73), and the transmembrane electrochemical potential difference for Cl is not different from zero. The results establish that the energy available from the Na+ electrochemical gradient is much greater than previously estimated from chemical measurements.  相似文献   

11.
《FEBS letters》1997,400(2-3):191-195
The different murine D2-type dopamine receptors (D2L, D2S, D3L, D3S, and D4) were expressed in Xenopus laevis oocytes. The D2-type receptors were all similarly and efficiently expressed in Xenopus oocytes and were shown to bind the D2 antagonist [125I]sulpride. They were all shown to activate Cl influx upon agonist stimulation. Using the diagnostic inhibitor bumetanide, we were able to separate the Na+/K+/2Cl cotransporter component of the Cl influx from the total unidirectional Cl influx. The D3L subtype was found to operate exclusively through the bumetanide-insensitive Cl influx whereas the other D2-type receptors acted on the Na+/K+/2Cl cotransporter as well. The pertussis toxin sensitivity of the receptor-activated chloride influx via the Na+/K+/2Cl cotransporter varied between the various D2-type receptors showing that they may couple to different G proteins, and activate different second messenger systems.  相似文献   

12.
A Cl-stimulated ATPase activity, which is sensitive to both thiocyanate and vanadate, has been localized to the plasma membrane of Aplysia enterocytes. Utilizing plasma membrane vesicles from Aplysia enterocytes, ATP stimulated Cl uptake to approximately 2.5-times that of control in a Na+, K+ and HCO3-free medium. This ATP-dependent Cl uptake was sensitive to both thiocyanate and vanadate. These results are consistent with the hypothesis that the active Cl absorptive process in Aplysia intestine could be a Cl-stimulated ATPase found in the enterocyte plasma membrane.  相似文献   

13.
Recent advances in molecular techniques have allowed gene expression in euryhaline animals to be quantified during salinity transfers. As these investigations transition from studying single genes to utilizing genomics-based methodologies, it is an appropriate time to summarize single gene studies. Therefore, a meta-analysis was performed on 59 published studies that used quantitative polymerase chain reaction (qPCR) to examine expression of osmoregulatory genes (the Na+/K+–ATPase, NKA; the Na+/K+/2Cl? cotransporter, NKCC; carbonic anhydrase, CA; the cystic fibrosis transmembrane regulator, CFTR; and the H+–ATPase, HAT) in response to salinity transfer. Based on 887 calculated effect sizes, NKA, NKCC, CA, and HAT are up-regulated after salinity transfer, while surprisingly, CFTR is unchanged. Meta-analysis also identified influential factors contributing to these changes. For example, expression was highest: 1) during transfers from higher to lower salinities comprising a physiological transition from osmoconformity to osmoregulation, 2) 1–3 days following transfer, 3) during dissimilar transfers, and 4) in crustaceans rather than teleosts. Methodological characteristics (e.g., types of controls) were not important. Experiments lacking in the current literature were also identified. Meta-analyses are powerful tools for quantitatively synthesizing a large body of literature, and this report serves as a template for their application in other areas of comparative physiology.  相似文献   

14.
The dynamics of Na+, K+, and proline accumulation in various organs of non nodulated Vigna sinensis and Phaseolus aureus was followed during their acclimation to two levels of salinities for a period of 35 days and was correlated to the vegetative growth of the two species. The rate of Na+ and K+ absorption is at a maximum during the first 15 to 20 days of culture. K+ absorption is not completely inhibited even at 100 mM NaCl although the endogenous Na+ largely surpasses that of K+ in certain organs. Low salinity rather accelerates K+ absorption in both species. The relative growth rates (RGR) correlate with the rate of Na+ and K+ accumulation. At low salinity (10 mM NaCl), the RGR of V. sinensis is greater than that of P. aureus. However, at high salinity (100 mM NaCl) the RGR is the same for both species. The growth of the younger parts of the two species is not arrested by salt treatment. Very high accumulation of Na+ is avoided in organs with less vacuolated tissues. At no time does the endogenous K : Na ratio in these organs fall below 1.0. Certain organs, especially the roots, hypocotyls, and the lower parts of the stems are capable of storing large quantities of Na+. In V. sinensis, the accumulated Na+ and K+ are evenly distributed among the various organs while in P. aureus they are rather concentrated in the roots. External salinity creates water deficiency in the younger plant parts and as a consequence, proline accumulates especially in the youngest aerial organs - more in P. aureus than in V. sinensis. The accumulation of this amino acid in both the species is dependent on time and correlates directly, not only with the water deficit, but also with the K+ contents. In contrast, it does not seem to depend directly on the endogenous Na+ content. The relative salt tolerance of the two species and the possible role of K+, Na+ and proline in the osmotic adjustments of the two species under saline conditions are discussed.  相似文献   

15.
This study describes the effects that prolonged dehydration has on ionic balance in Schistocerca gregaria. When adult locusts are dehydrated for 7 days the body weight reduces by 10–20% and the haemolymph volume by 35–50%, but haemolymph concentrations of Na+, K+ and Cl change only slightly. On dehydration Na+ and Cl are removed from the haemolymph; 25% of the removed ions is excreted and 75% is evenly distributed in the body of the locust. The amount of potassium excreted always exceeds that removed from the haemolymph. Mature adults control more effectively than young ones the haemolymph ionic composition during dehydration, but young adults show a smaller reduction in haemolymph volume. In the normal state of hydration, 76% of the total body Na+ and 56% of the total body Cl is present in the haemolymph. These fall to 62 and 42% respectively on dehydration and increase to 77 and 50% on rehydration.  相似文献   

16.
The effects of changes in secretory concentrations of K+, Cl and Na+ on transmembrane potential difference (PD) and resistance were compared for secreting fundus and resting fundus of Rana pipiens. In the resting fundus experiments histamine was present, and SCN and omeprazole gave similar results. Increase of K+ from 4 to 80 mM, decrease of Cl from 160 to 16 mM and decrease of Na+ from 156 to 15.6 mM gave, respectively, 10 min after the change, in the secreting fundus ΔPD = 7.6, 10.0 and −2.2 mV and in the resting fundus ΔPD = 4.3, 14.4 and 0 mV. With cimetidine and no histamine, increase of K+ from 4 to 80 mM gave a ΔPD which decreased to near zero after exposure to cimetidine for at least 30 min. For the same K+ change, replacement of cimetidine with SCN or omeprazole and without histamine maintained ΔPD near zero and subsequent addition of histamine with inhibitor present gave a ΔPD of about 12 mV. The change in ΔPD was attributed to histamine increasing the secretory membrane area, which results in an increase in K+ conductance. Increase in ΔPD in the resting fundus compared to the secreting fundus for a decrease from 160 to 16 mM Cl may be due to relatively little Cl entering the lumina from cells in the resting fundus, which would result in a greater change of the ratio intracellular Cl/luminal Cl in the resting fundus than in the secreting fundus for the decrease in Cl studied.  相似文献   

17.
Effects of reduced salinities on dry weight (DW) and biochemical composition (total lipid and protein contents) of zoea 1 larvae were evaluated in four decapod crustacean species differing in salinity tolerance (Cancer pagurus, Homarus gammarus, Carcinus maenas, Chasmagnathus granulata). The larvae were exposed to two different reduced salinities (15‰ and 25‰ in C. granulata, 20‰ and 25‰ in the other species) for a long (ca. 50% of the zoea 1 moulting cycle) or a short period (16 h, starting at ca. 40% of the moulting cycle), while a control group was continually maintained in seawater (32‰).In general, the increments in dry weight, lipid and protein content were lower at the reduced salinities than in the control groups. In the zoea 1 of H. gammarus (stenohaline) and C. pagurus (most probably also stenohaline), the lipid and protein contents varied greatly among treatments: larvae exposed to low salinities exhibited very low lipid and protein contents at the end of the experiments compared to the controls. In some cases, there were negative growth increments, i.e. the larvae had, after the experimental exposure, lower lipid and protein contents than at the beginning of the experiment. C. maenas (moderately euryhaline) showed a lower variation in protein and lipid content than the above species. The zoea 1 of C. granulata (fairly euryhaline) showed the lowest variability in dry weight, protein and lipid content. Since salinity tolerance (eury- v. stenohalinity) is associated with the osmoregulatory capacity, our results suggest a relationship between the capability for osmoregulation and the degree of change in the biochemical composition of larvae exposed to variable salinities.Besides larval growth of these species should be affected by natural reductions of salinity occurring in coastal areas at different time scales. These effects may be potentially important for population dynamics since they should influence the number and quality of larvae reaching metamorphosis.  相似文献   

18.
The occurrence, localization and response to environmental salinity changes of Na+-K+ATPase activity were studied in each of the individual gills 4-8 of the euryhaline crab Cyrtograpsus angulatus from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Na+-K+ATPase activity appeared to be differentially sensitive to environmental salinity among gills. Upon an abrupt change to low salinity, a differential response of Na+-K+ATPase activity occurred in each individual gill which could suggest a differential role of this enzyme in ion transport process in the different gills of C. angulatus. With the exception of gill 8, a short-term increase of Na+-K+ATPase specific activity was observed in posterior gills, which is similar to adaptative variations of this activity described in other euryhaline crabs. However, and conversely to that described in other hyperregulating crabs, the highest increase of activity occurred in anterior gills 4 by 1 day after the change to dilute media which could suggest also a role for these gills in ion transport processes in C. angulatus. The fact that variations of Na+-K+ATPase activity in anterior and posterior gills were concomitant with the transition to hyperregulation indicate that this enzyme could be a component of the branchial ionoregulatory mechanisms at the biochemical level in this crab. The results suggest a differential participation of branchial Na+-K+ATPase activity in ionoregulatory mechanisms of C. angulatus. The possible existence of functional differences as well as distinct regulation mechanisms operating in individual gills is discussed.  相似文献   

19.
20.
  • 1.1. The movements of Cl−1 have been studied in the so-called anterior and posterior gills of E. sinensis using radioactive 36Cl−1.
  • 2.2. The anterior gills hardly show any significant movements of Cl−1. They thus have a very low (if any) permeability to that ion. On the contrary, the posterior gills show both passive fluxes and an active inward movement of Cl−1.
  • 3.3. The Cl−1 influx in the posterior gills is largely sensitive to the amount of K+ in the perfusion saline.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号