首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gender differences in the prevalence of cardiovascular disease have been observed both clinically and experimentally. These cardioprotective effects have frequently been attributed to female hormones, however, the underlying mechanisms responsible for this cardioprotection are still poorly understood. Accordingly, this study sought to determine the contribution of ovarian hormones to the prevention of adverse ventricular remodeling and congestive heart failure in chronic volume overload (i.e. aortocaval fistula in intact or ovariectomized female rats). Ovariectomized rats developed more extensive cardiac remodeling than intact females at 21 weeks post-fistula, characterized by significantly greater left ventricular (LV) hypertrophy (167 vs. 86%, respectively, p < 0.05) and a substantial increase in LV dilatation (71%, p < 0.05) relative to control. In contrast to the eccentric hypertrophy in ovariectomized females post-fistula, the hypertrophic response in the intact female hearts was essentially concentric. While neither fistula group suffered significant mortality, there was a marked increase in the lung weight of ovariectomized rats (87%, p < 0.05) consistent with the development of pulmonary edema. Overall, the extent of myocardial remodeling and decrease in LV function in the ovariectomized females was comparable to those changes reported for males with symptomatic heart failure, while intact females maintained chronic compensated ventricular function similar to that of controls. The marked ventricular dilatation and symptoms of congestive heart failure seen at 21 weeks post-fistula in the ovariectomized females clearly demonstrate the influence of circulating ovarian hormones on the pattern of myocardial remodeling resulting from a chronic volume overload.  相似文献   

2.
Gallic acid has been reported to mitigate cardiac hypertrophy, fibrosis and arterial hypertension. The effects of syringic acid, a derivative of gallic acid, on cardiac hypertrophy and fibrosis have not been previously investigated. This study aimed to examine the effects of syringic acid on isoproterenol‐treated mice and cells. Syringic acid mitigated the isoproterenol‐induced upregulation of heart weight to bodyweight ratio, pathological cardiac remodelling and fibrosis in mice. Picrosirius red staining, quantitative real‐time polymerase chain reaction (qRT‐PCR) and Western blotting analyses revealed that syringic acid markedly downregulated collagen accumulation and fibrosis‐related factors, including Fn1. The results of RNA sequencing analysis of Ereg expression were verified using qRT‐PCR. Syringic acid or transfection with si‐Ereg mitigated the isoproterenol‐induced upregulation of Ereg, Myc and Ngfr. Ereg knockdown mitigated the isoproterenol‐induced upregulation of Nppb and Fn1 and enhancement of cell size. Mechanistically, syringic acid alleviated cardiac hypertrophy and fibrosis by downregulating Ereg. These results suggest that syringic acid is a potential therapeutic agent for cardiac hypertrophy and fibrosis.  相似文献   

3.
Macrophage polarization is a process whereby macrophages acquire distinct effector states (M1 or M2) to carry out multiple and sometimes opposite functions. We show here that translational reprogramming occurs during macrophage polarization and that this relies on the Elongator complex subunit Elp3, an enzyme that modifies the wobble uridine base U34 in cytosolic tRNAs. Elp3 expression is downregulated by classical M1‐activating signals in myeloid cells, where it limits the production of pro‐inflammatory cytokines via FoxO1 phosphorylation, and attenuates experimental colitis in mice. In contrast, alternative M2‐activating signals upregulate Elp3 expression through a PI3K‐ and STAT6‐dependent signaling pathway. The metabolic reprogramming linked to M2 macrophage polarization relies on Elp3 and the translation of multiple candidates, including the mitochondrial ribosome large subunit proteins Mrpl3, Mrpl13, and Mrpl47. By promoting translation of its activator Ric8b in a codon‐dependent manner, Elp3 also regulates mTORC2 activation. Elp3 expression in myeloid cells further promotes Wnt‐driven tumor initiation in the intestine by maintaining a pool of tumor‐associated macrophages exhibiting M2 features. Collectively, our data establish a functional link between tRNA modifications, mTORC2 activation, and macrophage polarization.  相似文献   

4.
Lysosomal positioning and mTOR (mammalian target of rapamycin) signaling coordinate cellular responses to nutrient levels. Inadequate nutrient sensing can result in growth delays, a hallmark of Lowe syndrome. OCRL mutations cause Lowe syndrome, but the role of OCRL in nutrient sensing is unknown. Here, we show that OCRL is localized to the centrosome by its ASH domain and that it recruits microtubule‐anchoring factor SSX2IP to the centrosome, which is important in the formation of the microtubule‐organizing center. Deficiency of OCRL in human and mouse cells results in loss of microtubule‐organizing centers and impaired microtubule‐based lysosome movement, which in turn leads to mTORC1 inactivation and abnormal nutrient sensing. Centrosome‐targeted PACT‐SSX2IP can restore microtubule anchoring and mTOR activity. Importantly, boosting the activity of mTORC1 restores the nutrient sensing ability of Lowe patients’ cells. Our findings highlight mTORC1 as a novel therapeutic target for Lowe syndrome.  相似文献   

5.
Idiopathic multicentric Castleman disease (iMCD) is a rare and life‐threatening haematologic disorder involving polyclonal lymphoproliferation and organ dysfunction due to excessive cytokine production, including interleukin‐6 (IL‐6). Clinical trial and real‐world data demonstrate that IL‐6 inhibition is effective in 34–50% of patients. mTOR, which functions through mTORC1 and mTORC2, is a recently discovered therapeutic target. The mTOR inhibitor sirolimus, which preferentially inhibits mTORC1, has led to sustained remission in a small cohort of anti‐IL‐6‐refractory iMCD patients with thrombocytopenia, anasarca, fever, renal dysfunction and organomegaly (iMCD‐TAFRO). However, sirolimus has not shown uniform effect, potentially due to its limited mTORC2 inhibition. To investigate mTORC2 activation in iMCD, we quantified the mTORC2 effector protein pNDRG1 by immunohistochemistry of lymph node tissue from six iMCD‐TAFRO and eight iMCD patients who do not meet TAFRO criteria (iMCD‐not‐otherwise‐specified; iMCD‐NOS). mTORC2 activation was increased in all regions of iMCD‐TAFRO lymph nodes and the interfollicular space of iMCD‐NOS compared with control tissue. Immunohistochemistry also revealed increased pNDRG1 expression in iMCD‐TAFRO germinal centres compared with autoimmune lymphoproliferative syndrome (ALPS), an mTOR‐driven, sirolimus‐responsive lymphoproliferative disorder, and comparable staining between iMCD‐NOS and ALPS. These results suggest increased mTORC2 activity in iMCD and that dual mTORC1/mTORC2 inhibitors may be a rational therapeutic approach.  相似文献   

6.
The Akt kinase is a critical effector in growth factor signaling. Activation of Akt driven by the growth factor dependent PI3K (phosphatidylinositol-3-OH kinase) is coupled to the plasma membrane translocation and phosphorylation of Akt on two sites by PDK1 (phosphoinositide-dependent protein kinase-1) on Thr-308 and by mTORC2 (mammalian Target of Rapamycin Complex 2) on Ser-473. In our study we examined the sub-cellular localization of mTORC2 and identified that this kinase complex predominantly resides on endoplasmic reticulum (ER). Our immunostaining analysis did not show a substantial co-localization of the mTORC2 component rictor with Golgi, lysosome, clathrin-coated vesicles, early endosomes, or plasma membrane but indicated a strong co-localization of rictor with ribosomal protein S6 and ER marker. Our biochemical study also identified the mTORC2 components rictor, SIN1, and mTOR as the highly abundant proteins in the ER fraction, whereas only small amount of these proteins are detected in the plasma membrane and cytosolic fractions. We found that growth factor signaling does not alter the ER localization of mTORC2 and also does not induce its translocation to the plasma membrane. Based on our study we suggest that the mTORC2-dependent phosphorylation of Akt on Ser-473 takes place on the surface of ER.  相似文献   

7.
Pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide. Liver kinase B1 interacting protein 1 (LKB1IP) was identified as the binding protein of tumour suppressor LKB1. However, the role of LKB1IP in the development of pathological cardiac hypertrophy has not been explored. The aim of this study was to investigate the function of LKB1IP in cardiac hypertrophy in response to hypertrophic stimuli. We investigated the cardiac level of LKB1IP in samples from patients with heart failure and mice with cardiac hypertrophy induced by isoproterenol (ISO) or transverse aortic constriction (TAC). LKB1IP knockout mice were generated and challenged with ISO injection or TAC surgery. Cardiac function, hypertrophy and fibrosis were then examined. LKB1IP expression was significantly up-regulated on hypertrophic stimuli in both human and mouse cardiac samples. LKB1IP knockout markedly protected mouse hearts against ISO- or TAC-induced cardiac hypertrophy and fibrosis. LKB1IP overexpression aggravated ISO-induced cardiomyocyte hypertrophy, and its inhibition attenuated hypertrophy in vitro. Mechanistically, LKB1IP activated Akt signalling by directly targeting PTEN and then inhibiting its phosphatase activity. In conclusion, LKB1IP may be a potential target for pathological cardiac hypertrophy.  相似文献   

8.
Nutritional excess and hyperlipidemia increase the heart’s susceptibility to ischemic injury. Mammalian target of rapamycin (mTOR) controls the cellular response to nutritional status and may play a role in ischemic injury. To explore the effect of hypercholesterolemia on cardiac mTOR signaling, we assessed mTOR signaling in hypercholesterolemic swine (HC) that are also susceptible to increased cardiac ischemia-reperfusion injury. Yucatan pigs were fed a high-fat/high-cholesterol diet for 4 weeks to induce hypercholesterolemia, and mTOR signaling was measured by immunoblotting and immunofluorescence in the non-ischemic left ventricular area. Total myocardial mTOR and raptor levels were markedly increased in the HC group compared to the normocholesterolemic group, and directly correlated with serum cholesterol levels. mTOR exhibited intense perinuclear staining in myocytes only in the HC group. Hypercholesterolemia was associated with hyperactive signaling upstream and downstream of both mTOR complexes, including myocardial Akt, S6K1, 4EBP1, S6, and PKC-alpha, increased levels of cardiac hypertrophy markers, and a trend toward lower levels of myocardial autophagy. Hypercholesterolemia can now be added to the growing list of conditions associated with aberrant mTOR signaling. Hypercholesterolemia produces a unique profile of alterations in cardiac mTOR signaling, which is a potential target in cardiac diseases associated with hypercholesterolemia and nutritional excess.  相似文献   

9.
The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source. Here, we show that loss of hypothalamic mTORC2 signaling in mice decreases activity level, increases the set point for adiposity, and renders the animals susceptible to diet‐induced obesity. Hypothalamic mTORC2 signaling normally increases with age, and mice lacking this pathway display higher fat mass and impaired glucose homeostasis throughout life, become more frail with age, and have decreased overall survival. We conclude that hypothalamic mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. Our results have implications for the use of mTORC2‐inhibiting pharmaceuticals in the treatment of brain cancer and diseases of aging.  相似文献   

10.
The activation of autophagic pathway by alkaline stress was investigated. Various types of mammalian cells were subjected to alkaline stress by incubation in bicarbonate buffered media in humidified air containing atmospheric 0.04% CO(2) . The induction of autophagy following alkaline stress was evaluated by assessing the conversion of cytosolic LC3-I into lipidated LC3-II, the accumulation of autophagosomes, and the formation of autolysosomes. Colocalization of GFP-LC3 with endolysosomal marker in HeLa GFP-LC3 cells undergoing autophagic process by alkaline stress further demonstrates that autophagosomes triggered by alkaline stress matures into autolysosomes for the lysosome dependent degradation. We found that the inactivation of mTORC1 is important for the pathway leading to the induction of autophagy by alkaline stress since the expression of RhebQ64L, a constitutive activator of mTORC1, downregulates the induction of autophagy after alkaline stress in transfected human 293T cells. These results imply that activation of autophagic pathway following the inactivation of mTORC1 is important cellular events governing alkaline stress-induced cytotoxicity and clinical symptoms associated with alkalosis.  相似文献   

11.
Li ZB  Gao YQ  Tang ZS 《生理学报》1998,50(5):551-556
我们前期研究表明运动性和高血压性心肌肥大细胞表型变化在结构、功能和代谢方面均表现不同,但两者基因表达的不同特征尚不清楚。本实验采用Northern分子杂交方法对游泳运动12周大鼠和自发性高血压大鼠(SHR)肥大心脏心肌初级和次级应答基因表达进行比较研究。结果表明,游泳大鼠心系数比对照大鼠提高26%(P〈0.01),心肌c-fos和心房钠尿肽(ANF)基因表达在最后一次运动后即刻明显增强,在运动后2  相似文献   

12.
Prolonged pathological myocardial hypertrophy leads to end‐stage heart failure. Thymoquinone (TQ), a bioactive component extracted from Nigella sativa seeds, is extensively used in ethnomedicine to treat a broad spectrum of disorders. However, it remains unclear whether TQ protects the heart from pathological hypertrophy. This study was conducted to examine the potential utility of TQ for treatment of pathological cardiac hypertrophy and if so, to elucidate the underlying mechanisms. Male C57BL/6J mice underwent either transverse aortic constriction (TAC) or sham operation, followed by TQ treatment for six consecutive weeks. In vitro experiments consisted of neonatal rat cardiomyocytes (NRCMs) that were exposed to phenylephrine (PE) stimulation to induce cardiomyocyte hypertrophy. In this study, we observed that systemic administration of TQ preserved cardiac contractile function, and alleviated cardiac hypertrophy, fibrosis and oxidative stress in TAC‐challenged mice. The in vitro experiments showed that TQ treatment attenuated the PE‐induced hypertrophic response in NRCMs. Mechanistical experiments showed that supplementation of TQ induced reactivation of the AMP‐activated protein kinase (AMPK) with concomitant inhibition of ERK 1/2, p38 and JNK1/2 MAPK cascades. Furthermore, we demonstrated that compound C, an AMPK inhibitor, abolished the protective effects of TQ in in vivo and in vitro experiments. Altogether, our study disclosed that TQ provides protection against myocardial hypertrophy in an AMPK‐dependent manner and identified it as a promising agent for the treatment of myocardial hypertrophy.  相似文献   

13.
Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5′‐AMP‐activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP2J2 and EETs remains unclear. We investigated whether CYP2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1. Moreover, we tested whether EETs enhanced cross talk between AMPKα2 and phosphorylated Akt1 (p‐Akt1), and stimulated nuclear translocation of p‐Akt1, to exert their antihypertrophic effects. AMPKα2?/? mice that overexpressed CYP2J2 in heart were treated with Ang II for 2 weeks. Interestingly, overexpression of CYP2J2 suppressed cardiac hypertrophy and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild‐type mice but not AMPKα2?/? mice. The CYP2J2 metabolites, 11,12‐EET, activated AMPKα2 to induce nuclear translocation of p‐Akt1 selectively, which increased the production of ANP and therefore inhibited the development of cardiac hypertrophy. Furthermore, by co‐immunoprecipitation analysis, we found that AMPKα2β2γ1 and p‐Akt1 interact through the direct binding of the AMPKγ1 subunit to the Akt1 protein kinase domain. This interaction was enhanced by 11,12‐EET. Our studies reveal a novel mechanism in which CYP2J2 and EETs enhanced Akt1 nuclear translocation through interaction with AMPKα2β2γ1 and protect against cardiac hypertrophy and suggest that overexpression of CYP2J2 might have clinical potential to suppress cardiac hypertrophy and heart failure.  相似文献   

14.
Colorectal cancer is a major contributor of cancer-related mortality. The mammalian target or rapamycin (mTOR) signaling is frequently hyper-activated in colorectal cancers, promoting cancer progression and chemo-resistance. In the current study, we investigated the anti-colorectal cancer effect of a novel mTOR complex 1 (mTORC1) and mTORC2 dual inhibitor: AZD-2014. In cultured colorectal cancer cell lines, AZD-2014 significantly inhibited cancer cell growth without inducing significant cell apoptosis. AZD-2014 blocked activation of both mTORC1 (S6K and S6 phosphorylation) and mTORC2 (Akt Ser 473 phosphorylation), and activated autophagy in colorectal cancer cells. Meanwhile, autophagy inhibition by 3-methyaldenine (3-MA) and hydroxychloroquine, as well as by siRNA knocking down of Beclin-1 or ATG-7, inhibited AZD-2014-induced cytotoxicity, while the apoptosis inhibitor had no rescue effect. In vivo, AZD-2014 oral administration significantly inhibited the growth of HT-29 cell xenograft in SCID mice, and the mice survival was dramatically improved. At the same time, in xenografted tumors administrated with AZD-2014, the activation of mTORC1 and mTORC2 were largely inhibited, and autophagic markers were significantly increased. Thus, AZD-2014 inhibits colorectal cancer cell growth both in vivo and in vitro. Our results suggest that AZD-2014 may be further investigated for colorectal cancer therapy in clinical trials.  相似文献   

15.
Ubiquitin‐specific protease 19 (USP19) belongs to USP family and is involved in promoting skeletal muscle atrophy. Although USP19 is expressed in the heart, the role of USP19 in the heart disease remains unknown. The present study provides in vivo and in vitro data to reveal the role of USP19 in preventing pathological cardiac hypertrophy. We generated USP19‐knockout mice and isolated neonatal rat cardiomyocytes (NRCMs) that overexpressed or were deficient in USP19 to investigate the effect of USP19 on transverse aortic constriction (TAC) or phenylephrine (PE)‐mediated cardiac hypertrophy. Echocardiography, pathological and molecular analysis were used to determine the extent of cardiac hypertrophy, fibrosis, dysfunction and inflammation. USP19 expression was markedly increased in rodent hypertrophic heart or cardiomyocytes underwent TAC or PE culturing, the increase was mediated by the reduction of Seven In Absentia Homolog‐2. The extent of TAC‐induced cardiac hypertrophy, fibrosis, dysfunction and inflammation in USP19‐knockout mice was exacerbated. Consistently, gain‐of‐function and loss‐of‐function approaches that involved USP19 in cardiomyocytes suggested that the down‐regulation of USP19 promoted the hypertrophic phenotype, while the up‐regulation of USP19 improved the worsened phenotype. Mechanistically, the USP19‐elicited cardiac hypertrophy improvement was attributed to the abrogation of the transforming growth factor beta‐activated kinase 1 (TAK1)‐p38/JNK1/2 transduction. Furthermore, the inhibition of TAK1 abolished the aggravated hypertrophy induced by the loss of USP19. In conclusion, the present study revealed that USP19 and the downstream of TAK1‐p38/JNK1/2 signalling pathway might be a potential target to attenuate pathological cardiac hypertrophy.  相似文献   

16.
Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and regulated by various signalling pathways. Recently, we observed that mouse embryonic fibroblasts from CD38 knockout mice were significantly resistant to oxidative stress such as H2O2‐induced injury and hypoxia/reoxygenation‐induced injury. In addition, we also found that CD38 knockout mice protected heart from ischaemia reperfusion injury through activating SIRT1/FOXOs‐mediated antioxidative stress pathway. However, the role of CD38 in cardiac hypertrophy is not explored. Here, we investigated the roles and mechanisms of CD38 in angiotensin II (Ang‐II)‐induced cardiac hypertrophy. Following 14 days of Ang‐II infusion with osmotic mini‐pumps, a comparable hypertension was generated in both of CD38 knockout and wild‐type mice. However, the cardiac hypertrophy and fibrosis were much more severe in wild‐type mice compared with CD38 knockout mice. Consistently, RNAi‐induced knockdown of CD38 decreased the gene expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) and reactive oxygen species generation in Ang‐II‐stimulated H9c2 cells. In addition, the expression of SIRT3 was elevated in CD38 knockdown H9c2 cells, in which SIRT3 may further activate the FOXO3 antioxidant pathway. The intracellular Ca2+ release induced by Ang‐II markedly decreased in CD38 knockdown H9c2 cells, which might be associated with the decrease of nuclear translocation of NFATc4 and inhibition of ERK/AKT phosphorylation. We concluded that CD38 plays an essential role in cardiac hypertrophy probably via inhibition of SIRT3 expression and activation of Ca2+‐NFAT signalling pathway. Thus, CD38 may be a novel target for treating cardiac hypertrophy.  相似文献   

17.
ZAK (sterile alpha motif and leucine zipper containing kinase AZK), a serine/threonine kinase with multiple biochemical functions, has been associated with various cell processes, including cell proliferation, cell differentiation, and cardiac hypertrophy. In our previous reports, we found that the activation of ZAKα signaling was critical for cardiac hypertrophy. In this study, we show that the expression of ZAKα activated apoptosis through both a FAS‐dependent pathway and a mitochondria‐dependent pathway by subsequently inducing caspase‐3. ZAKβ, an isoform of ZAKα, is dramatically expressed during cardiac hypertrophy and apoptosis. The interaction between ZAKα and ZAKβ was demonstrated here using immunoprecipitation. The results show that ZAKβ has the ability to diminish the expression level of ZAKα. These findings reveal an inherent regulatory role of ZAKβ to antagonize ZAKα and to subsequently downregulate the cardiac hypertrophy and apoptosis induced by ZAKα.  相似文献   

18.
Interactions between the tumor cells and bone marrow (BM) microenvironment promote survival, growth, and chemoresistance of acute myeloid leukemia (AML). The mTOR pathway plays a key role in mediating the AML-BM microenvironment interactions. Here, we report the anti-AML activity of a natural monomer extracted from the Chinese medicinal herb Evodia rutaecarpa, dihydroevocarpine. Our results showed that dihydroevocarpine-induced cytotoxicity, apoptosis, and G0/G1 arrest in AML cells, and inhibited the tumor growth in an AML xenograft model. Importantly, our study revealed that the dihydroevocarpine treatment inhibited the mTOR pathway via suppressing the mTORC1/2 activity, and thus overcame the protective effect of the BM microenvironment on AML cells. Taken together, our findings suggest that dihydroevocarpine could be used as a potential anti-AML agent alone or a therapeutic adjunct in AML therapy, particularly in the presence of the BM microenvironment.  相似文献   

19.
20.
Craniosynostosis is the premature fusion of skull sutures and has a severe pathological impact on childrens’ life. Mechanical forces are capable of triggering biological responses in bone cells and regulate osteoblastogenesis in cranial sutures, leading to premature closure. The mechanosensitive proteins polycystin‐1 (PC1) and polycystin‐2 (PC2) have been documented to play an important role in craniofacial proliferation and development. Herein, we investigated the contribution of PC1 to the pathogenesis of non‐syndromic craniosynostosis and the associated molecular mechanisms. Protein expression of PC1 and PC2 was detected in bone fragments derived from craniosynostosis patients via immunohistochemistry. To explore the modulatory role of PC1 in primary cranial suture cells, we further abrogated the function of PC1 extracellular mechanosensing domain using a specific anti‐PC1 IgPKD1 antibody. Effect of IgPKD1 treatment was evaluated with cell proliferation and migration assays. Activation of PI3K/AKT/mTOR pathway components was further detected via Western blot in primary cranial suture cells following IgPKD1 treatment. PC1 and PC2 are expressed in human tissues of craniosynostosis. PC1 functional inhibition resulted in elevated proliferation and migration of primary cranial suture cells. PC1 inhibition also induced activation of AKT, exhibiting elevated phospho (p)‐AKT (Ser473) levels, but not 4EBP1 or p70S6K activation. Our findings indicate that PC1 may act as a mechanosensing molecule in cranial sutures by modulating osteoblastic cell proliferation and migration through the PC1/AKT/mTORC2 cascade with a potential impact on the development of non‐syndromic craniosynostosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号