首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM) structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7), and B (between TM5 and 6), respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 Å and is between 11.6 and 3.2 Å wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal β-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90° elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all-trans-retinal through B.  相似文献   

2.
Despite extensive study, how retinal enters and exits the visual G protein-coupled receptor rhodopsin remains unclear. One clue may lie in two openings between transmembrane helix 1 (TM1) and TM7 and between TM5 and TM6 in the active receptor structure. Recently, retinal has been proposed to enter the inactive apoprotein opsin (ops) through these holes when the receptor transiently adopts the active opsin conformation (ops*). Here, we directly test this “transient activation” hypothesis using a fluorescence-based approach to measure rates of retinal binding to samples containing differing relative fractions of ops and ops*. In contrast to what the transient activation hypothesis model would predict, we found that binding for the inverse agonist, 11-cis-retinal (11CR), slowed when the sample contained more ops* (produced using M257Y, a constitutively activating mutation). Interestingly, the increased presence of ops* allowed for binding of the agonist, all-trans-retinal (ATR), whereas WT opsin showed no binding. Shifting the conformational equilibrium toward even more ops* using a G protein peptide mimic (either free in solution or fused to the receptor) accelerated the rate of ATR binding and slowed 11CR binding. An arrestin peptide mimic showed little effect on 11CR binding; however, it stabilized opsin·ATR complexes. The TM5/TM6 hole is apparently not involved in this conformational selection. Increasing its size by mutagenesis did not enable ATR binding but instead slowed 11CR binding, suggesting that it may play a role in trapping 11CR. In summary, our results indicate that conformational selection dictates stable retinal binding, which we propose involves ATR and 11CR binding to different states, the latter a previously unidentified, open-but-inactive conformation.  相似文献   

3.
Tatsuo Suzuki  Momoyo Makino 《BBA》1981,636(1):27-31
The composition of retinal isomers in the photosteady-state mixtures formed from squid rhodopsin and metarhodopsin was determined by high-pressure liquid chromatography. A large amount of 9-cis-retinal was obtained at liquid N2 temperature when rhodopsin was irradiated with orange light, but only small quantities of 9-cis-retinal were obtained at 15°C. Scarcely any 9-cis-retinal was produced from metarhodopsin by irradiation at liquid N2 temperature. A large quantity of 7-cis-retinal was found in the photoproduct of rhodopsin irradiated at solid carbon dioxide temperature, but not at 15°C and liquid N2 temperature. 7-cis-Retinal was not produced from metarhodopsin at any temperatures. These results indicate that the photoisomerization of retinal is regulated by the structure of the retinal-binding site of this protein. The formation of 9-cis- and 7-cis-retinals is forbidden in the metarhodopsin protein.  相似文献   

4.
AIM: To investigate the interaction of reconstituted rhodopsin, 9-cis-retinal-rhodopsin and 13-cis-retinal-rhodopsin with transducin, rhodopsin kinase and arrestin-1. METHODS: Rod outer segments(ROS) were isolated from bovine retinas. Following bleaching of ROS membranes with hydroxylamine, rhodopsin and rhodopsin analogues were generated with the different retinal isomers and the concentration of the reconstituted pigments was calculated from their UV/visible absorption spectra. Transducin and arrestin-1 were purified to homogeneity by column chromatography, and an enriched-fraction of rhodopsin kinase was obtainedby extracting freshly prepared ROS in the dark. The guanine nucleotide binding activity of transducin was determined by Millipore filtration using β,γ-imido-(3H)-guanosine 5'-triphosphate. Recognition of the reconstituted pigments by rhodopsin kinase was determined by autoradiography following incubation of ROS membranes containing the various regenerated pigments with partially purified rhodopsin kinase in the presence of(γ-32P) ATP. Binding of arrestin-1 to the various pigments in ROS membranes was determined by a sedimentation assay analyzed by sodium dodecyl sulphatepolyacrylamide gel electrophoresis. RESULTS: Reconstituted rhodopsin and rhodopsin analogues containing 9-cis-retinal and 13-cis-retinal rendered an absorption spectrum showing a maximum peak at 498 nm, 486 nm and about 467 nm, respectively, in the dark; which was shifted to 380 nm, 404 nm and about 425 nm, respectively, after illumination. The percentage of reconstitution of rhodopsin and the rhodopsin analogues containing 9-cis-retinal and 13-cis-retinal was estimated to be 88%, 81% and 24%, respectively. Although only residual activation of transducin was observed in the dark when reconstituted rhodopsin and 9-cis-retinal-rhodopsin was used, the rhodopsin analogue containing the 13-cis isomer of retinal was capable of activating transducin independently of light. Moreover, only a basal amount of the reconstituted rhodopsin and 9-cis-retinal-rhodopsin was phosphorylated by rhodopsin kinase in the dark, whereas the pigment containing the 13-cis-retinal was highly phosphorylated by rhodopsin kinase even in the dark. In addition, arrestin-1 was incubated with rhodopsin, 9-cis-retinal-rhodopsin or 13-cis-retinal-rhodopsin. Experiments were performed using both phosphorylated and non-phosphorylated regenerated pigments. Basal amounts of arrestin-1 interacted with rhodopsin, 9-cis-retinal-rhodopsin and 13-cis-retinal-rhodopsin under dark and light conditions. Residual arrestin-1 was also recognized by the phosphorylated rhodopsin and phosphorylated 9-cis-retinal-rhodopsin in the dark. However, arrestin-1 was recognized by phosphorylated 13-cis-retinal-rhodopsin in the dark. As expected, all reformed pigments were capable of activating transducin and being phosphorylated by rhodopsin kinase in a lightdependent manner. Additionally, all reconstituted photolyzed and phosphorylated pigments were capable of interacting with arrestin-1. CONCLUSION: In the dark, the rhodopsin analogue containing the 13-cis isomer of retinal appears to fold in a pseudo-active conformation that mimics the active photointermediate of rhodopsin.  相似文献   

5.
Over 100 mutations in the rhodopsin gene have been linked to a spectrum of retinopathies that include retinitis pigmentosa and congenital stationary night blindness. Though most of these variants exhibit a loss of function, the molecular defects caused by these underlying mutations vary considerably. In this work, we utilize deep mutational scanning to quantitatively compare the plasma membrane expression of 123 known pathogenic rhodopsin variants in the presence and absence of the stabilizing cofactor 9-cis-retinal. We identify 69 retinopathy variants, including 20 previously uncharacterized variants, that exhibit diminished plasma membrane expression in HEK293T cells. Of these apparent class II variants, 67 exhibit a measurable increase in expression in the presence of 9-cis-retinal. However, the magnitude of the response to this molecule varies considerably across this spectrum of mutations. Evaluation of the observed shifts relative to thermodynamic estimates for the coupling between binding and folding suggests underlying differences in stability constrains the magnitude of their response to retinal. Nevertheless, estimates from computational modeling suggest that many of the least sensitive variants also directly compromise binding. Finally, we evaluate the functional properties of three previous uncharacterized, retinal-sensitive variants (ΔN73, S131P, and R135G) and show that two of these retain residual function in vitro. Together, our results provide a comprehensive experimental characterization of the proteostatic properties of retinopathy variants and their response to retinal.  相似文献   

6.
The retina-specific ATP binding cassette transporter, ABCA4 protein, is associated with a broad range of inherited macular degenerations, including Stargardt disease, autosomal recessive cone rod dystrophy, and fundus flavimaculatus. In order to understand its role in retinal transport in rod out segment discs, we have investigated the interactions of the soluble domains of ABCA4 with both 11-cis- and all-trans-retinal. Using fluorescence anisotropy-based binding analysis and recombinant polypeptides derived from the amino acid sequences of the four soluble domains of ABCA4, we demonstrated that the nucleotide binding domain 1 (NBD1) specifically bound 11-cis-retinal. Its affinity for all-trans-retinal was markedly reduced. Stargardt disease-associated mutations in this domain resulted in attenuation of 11-cis-retinal binding. Significant differences in 11-cis-retinal binding affinities were observed between NBD1 and other cytoplasmic and lumenal domains of ABCA4. The results suggest a possible role of ABCA4 and, in particular, the NBD1 domain in 11-cis-retinal binding. These results also correlate well with a recent report on the in vivo role of ABCA4 in 11-cis-retinal transport.  相似文献   

7.
9-cis-Retro-γ;rhodopsin (λmax = 420 nm) was prepared from 9-cis-retro-γ-retinal and cattle opsin. After cooling to liquid nitrogen temperature (77 K), the pigment was irradiated with light at 380 nm. The spectrum shifted to the longer wavelengths, owing to formation of a batho product. This fact indicates that the conjugated double bond system from C-5 to C-8 of the chromophoric retinal in rhodopsin was not necessary for formation of bathorhodopsin. Reirradiation of the batho product with light at wavelengths longer than 520 nm yielded a mixture composed of presumably 9- or 11-cis forms of retro-γ-rhodopsin. These three isomers are interconvertible by light at liquid nitrogen temperature. Thus the retro-γ-rhodopsin system is similar in photochemical reaction at 77 K to cattle rhodopsin system. Each system has its own batho product. Based on these results, it was infered that the formation of bathorhodopsin is due to photoisomerization of the chromophoric retinal of rhodopsin and is not due to translocation of a proton on the ring or on the side chain from C-6 to C-8 of the chromophoric retinal to the Schiff-base nitrogen.  相似文献   

8.
The vertebrate visual photoreceptor rhodopsin (Rho) is a unique G protein-coupled receptor as it utilizes a covalently tethered inverse agonist (11-cis-retinal) as the native ligand. Previously, electrophysiological studies showed that ligand binding of 11-cis-retinal in dark-adapted Rho was essentially irreversible with a half-life estimated to be 420 years, until after thermal isomerization to all-trans-retinal, which then slowly dissociates. This long lifetime of 11-cis-retinal binding was considered to be physiologically important for minimizing background signal (dark noise) of the visual system. However, in vitro biochemical studies on the thermal stability of Rho showed that Rho decays with a half-life on the order of days. In this study, we resolve the discrepancy by measuring the chromophore exchange rate of the bound 11-cis-retinal chromophore with free 9-cis-retinal from Rho in an in vitro phospholipid/detergent bicelle system. We conclude that the thermal decay of Rho primarily proceeds through spontaneous breaking of the covalent linkage between opsin and 11-cis-retinal, which was overlooked in the electrophysiological recording. We estimate that this slow spontaneous release of 11-cis-retinal from Rho should result in 104 to 105 free opsin molecules in a dark-adapted rod cell—a number that is three orders of magnitude higher than previously expected. We also discuss the physiological implications of these findings on the basal activity of opsins and the associated dark noise in the visual system.  相似文献   

9.
A major goal in vision research over the past few decades has been to understand the molecular details of retinoid processing within the retinoid (visual) cycle. This includes the consequences of side reactions that result from delayed all-trans-retinal clearance and condensation with phospholipids that characterize a variety of serious retinal diseases. Knowledge of the basic retinoid biochemistry involved in these diseases is essential for development of effective therapeutics. Photoisomerization of the 11-cis-retinal chromophore of rhodopsin triggers a complex set of metabolic transformations collectively termed phototransduction that ultimately lead to light perception. Continuity of vision depends on continuous conversion of all-trans-retinal back to the 11-cis-retinal isomer. This process takes place in a series of reactions known as the retinoid cycle, which occur in photoreceptor and RPE cells. All-trans-retinal, the initial substrate of this cycle, is a chemically reactive aldehyde that can form toxic conjugates with proteins and lipids. Therefore, much experimental effort has been devoted to elucidate molecular mechanisms of the retinoid cycle and all-trans-retinal-mediated retinal degeneration, resulting in delineation of many key steps involved in regenerating 11-cis-retinal. Three particularly important reactions are catalyzed by enzymes broadly classified as acyltransferases, short-chain dehydrogenases/reductases and carotenoid/retinoid isomerases/oxygenases. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.  相似文献   

10.
The Retinitis pigmentosa (RP)-causing mutant of rhodopsin, P23H rhodopsin, is folding-defective and unable to traffic beyond the endoplasmic reticulum (ER). This ER retention, and in some cases aggregation, are proposed to result in ER-stress and eventually cell death. The endogenous rhodopsin ligand 11-cis-retinal and its isomer 9-cis-retinal have been shown to act as pharmacological chaperones, promoting proper folding and trafficking of the P23H rhodopsin. In spite of this promising effect, the development of retinals and related polyenealdehydes as pharmacological agents has been hampered by their undesirable properties, which include chemical instability, photolability, and potential retinoidal actions. Here, we report the design and synthesis of a class of more stable nonpolyene-type rhodopsin ligands, structurally distinct from, and with lower toxicity than, retinals. A structure–activity relationship study was conducted using cell-surface expression assay to quantify folding/trafficking efficiency of P23H rhodopsin.  相似文献   

11.
Variants of rhodopsin, a complex of 11-cis retinal and opsin, cause retinitis pigmentosa (RP), a degenerative disease of the retina. Trafficking defects due to rhodopsin misfolding have been proposed as the most likely basis of the disease, but other potentially overlapping mechanisms may also apply. Pharmacological therapies for RP must target the major disease mechanism and contend with overlap, if it occurs. To this end, we have explored the molecular basis of rhodopsin RP in the context of pharmacological rescue with 11-cis retinal. Stable inducible cell lines were constructed to express wild-type opsin; the pathogenic variants T4R, T17M, P23A, P23H, P23L, and C110Y; or the nonpathogenic variants F220L and A299S. Pharmacological rescue was measured as the fold increase in rhodopsin or opsin levels upon addition of 11-cis retinal during opsin expression. Only Pro23 and T17M variants were rescued significantly. C110Y opsin was produced at low levels and did not yield rhodopsin, whereas the T4R, F220L, and A299S proteins reached near-wild-type levels and changed little with 11-cis retinal. All of the mutant rhodopsins exhibited misfolding, which increased over a broad range in the order F220L, A299S, T4R, T17M, P23A, P23H, P23L, as determined by decreased thermal stability in the dark and increased hydroxylamine sensitivity. Pharmacological rescue increased as misfolding decreased, but was limited for the least misfolded variants. Significantly, pathogenic variants also showed abnormal photobleaching behavior, including an increased ratio of metarhodopsin-I-like species to metarhodopsin-II-like species and aberrant photoproduct accumulation with prolonged illumination. These results, combined with an analysis of published biochemical and clinical studies, suggest that many rhodopsin variants cause disease by affecting both biosynthesis and photoactivity. We conclude that pharmacological rescue is promising as a broadly effective therapy for rhodopsin RP, particularly if implemented in a way that minimizes the photoactivity of the mutant proteins.  相似文献   

12.
Cellular retinal-binding protein from bovine retina purifies with bound 11-cis-retinal and 11-cis-retinol as endogenous ligands. Inasmuch as these retinoids are interconvertible by a dehydrogenase reaction the accessibility of the aldehyde function of bound 11-cis-retinal to chemical and enzymatic reducing agents was determined. An 11-cis-retinol dehydrogenase from retinal pigment epithelial microsomes, first described by Lion, F., Rotmans, J.P., Daemen, F.J.M. and Bonting, S.L. (Biochim. Biophys. Acta 384, 283–292, 1975) was found to reduce complexed 11-cis-retinal at pH 5.5 and 37°C rapidaly and nearly quantitatively. The product of the reduction, 11-cis-retinol, remained complexed with the binding protein following the reaction. Reduction proceeded 3-times more rapidly with NADH than with NADPH. No change in geometrical isomeric configuration occurred during the reaction. The dehydrogenase from retinal pigment epithelium oxidized 11-cis-retinol complexed with cellular retinal-binding protein at pH 8.5 in the presence of NAD. In spite of the ready enzymatic reduction of 11-cis-retinal complexed with cellular retinal-binding protein, the aldehyde function was inaccessible to several chemical reducing agents. Incubation of the complex with NaBH4 at pH 7.5 and NaCNBH3 or borane dimethylamine at pH 5.5 did not result in reduction of 11-cis-retinal unless the complex had been exposed to white light, a treatment known to produce all-rans-retinal which has little affinity for the binding protein. Liver alcohol dehydrogenase produced only 10% reduction of 11-cis-retinal complexed with cellular retinal-binding protein in 15 min at 37°C when added in amounts which produced about 60% reduction of the uncomplexed retinoid. The results suggest that the interaction between the 11-cis-retinol dehydrogenase and the 11-cis-retinal complexed to cellular retinal-binding protein is a specific one of that the binding protein may function as a substrate carrier for a dehydrogenase.  相似文献   

13.
Bacteriorhodopsin monomer dispersed in a solution of the detergent L-1690 could maintain the specific interaction between retinal and protein in the pH range 9.0-0.0 at 25°C. λmax of the absorbance spectrum was 550 nm at pH 9.0, 556 nm at pH 5.5, 609 nm at pH 2.1 and 570 nm at pH 0.0. Increasing the NaCl concentration in the solution promoted formation of the 609 nm product at pH 5.0-3.0 and also its transition to the 570 nm product at pH 2.5-1.0. Retinal isomer analysis gave a ratio of 13-cis- to all-trans-retinal of 53 : 47 at pH 5.5. When the pH of the solution was reduced, the relative content of all-trans-retinal increased and the ratio of 13-cis- to all-trans-retinal was 14 : 86 at pH 0.0. Illumination of the solution at pH 7.2 yielded a product containing 9-cis-retinal or 9-cis, 13-cis-retinal, which may be due to a reaction other than the photoreaction cycle.  相似文献   

14.
The structure in the extracellular, intradiscal domain of rhodopsin surrounding the Cys110–Cys187 disulfide bond has been shown to be important for correct folding of this receptor in vivo. Retinitis pigmentosa misfolding mutants of the apoprotein opsin (such as P23H) misfold, as defined by a deficiency in ability to bind 11-cis retinal and form rhodopsin. These mutants also possess an abnormal Cys185–Cys187 disulfide bond in the intradiscal domain. Here, by mutating Cys185 to alanine, we eliminate the possibility of forming this abnormal disulfide bond and investigate the effect of combining the C185A mutation with the retinitis pigmentosa mutation P23H. Both the P23H and P23H/C185A double mutant suffer from low expression and poor 11-cis retinal binding. Our data suggest that misfolding events occur that do not have an absolute requirement for abnormal Cys185–Cys187 disulfide bond formation. In the detergent-solubilised, purified state, the C185A mutation allows formation of rhodopsin at wild-type (WT) levels, but has interesting effects on protein stability. C185A rhodopsin is less thermally stable than WT, whereas C185A opsin shows the same ability to regenerate rhodopsin in detergent as WT. Purified C185A and WT opsins, however, have contrasting 11-cis retinal binding kinetics. A high proportion of C185A opsin binds 11-cis retinal with a slow rate that reflects a denatured state of opsin reverting to a fast-binding, open-pocket conformation. This slower rate is not observed in a stabilising lipid/detergent system, 1,2-dimyristoyl-sn-glycero-3-phosphocholine/Chaps, in which C185A exhibits WT (fast) retinal binding. We propose that the C185A mutation destabilises the open-pocket conformation of opsin in detergent resulting in an equilibrium between correctly folded and denatured states of the protein. This equilibrium can be driven towards the correctly folded rhodopsin state by the binding of 11-cis retinal.  相似文献   

15.
P. Hegemann  W. Grtner    R. Uhl 《Biophysical journal》1991,60(6):1477-1489
Orientation of the green alga Chlamydomonas in light (phototaxis and stop responses) is controlled by a visual system with a rhodopsin as the functional photoreceptor. Here, we present evidence that in Chlamydomonas wild-type cells all-trans retinal is the predominant isomer and that it is present in amounts similar to that of the rhodopsin itself.

The ability of different retinal isomers and analog compounds to restore photosensitivity in blind Chlamydomonas cells (strain CC2359) was tested by means of flash-induced light scattering transients or by measuring phototaxis in a taxigraph. All-trans retinal reconstitutes behavioral light responses within one minute, whereas cis-isomers require at least 50 × longer incubation times, suggesting that the retinal binding site is specific for all-trans retinal. Experiments with 13-demethyl(dm)-retinal and short-chained analogs reveal that only chromophores with a β-methyl group and at least three double bonds in conjugation with the aldehyde mediate function. Because neither 13-dm-retinal, nor 9,12-phenylretinal restores a functional rhodopsin, a trans/13-cis isomerisation seems to take place in the course of the activation mechanism. We conclude that with respect to its chromophore, Chlamydomonas rhodopsin bears a closer resemblence to bacterial rhodopsins than to visual rhodopsins of higher animals.

  相似文献   

16.
Regeneration of the visual chromophore, 11-cis-retinal, is a crucial step in the visual cycle required to sustain vision. This cycle consists of sequential biochemical reactions that occur in photoreceptor cells and the retinal pigmented epithelium (RPE). Oxidation of 11-cis-retinol to 11-cis-retinal is accomplished by a family of enzymes termed 11-cis-retinol dehydrogenases, including RDH5 and RDH11. Double deletion of Rdh5 and Rdh11 does not limit the production of 11-cis-retinal in mice. Here we describe a third retinol dehydrogenase in the RPE, RDH10, which can produce 11-cis-retinal. Mice with a conditional knock-out of Rdh10 in RPE cells (Rdh10 cKO) displayed delayed 11-cis-retinal regeneration and dark adaption after bright light illumination. Retinal function measured by electroretinogram after light exposure was also delayed in Rdh10 cKO mice as compared with controls. Double deletion of Rdh5 and Rdh10 (cDKO) in mice caused elevated 11/13-cis-retinyl ester content also seen in Rdh5−/−Rdh11−/− mice as compared with Rdh5−/− mice. Normal retinal morphology was observed in 6-month-old Rdh10 cKO and cDKO mice, suggesting that loss of Rdh10 in the RPE does not negatively affect the health of the retina. Compensatory expression of other retinol dehydrogenases was observed in both Rdh5−/− and Rdh10 cKO mice. These results indicate that RDH10 acts in cooperation with other RDH isoforms to produce the 11-cis-retinal chromophore needed for vision.  相似文献   

17.
The molecular dynamics of the rhodopsin chromophore (11-cis-retinal) has been followed over a 3-ns path, whereby 3 × 106 discrete conformational states of the molecule were recorded. It is shown that within a short time, 0.3–0.4 ns from the start of simulation, the retinal β-ionone ring rotates about the C6–C7 bond through ~60° relative to the initial configuration, and the whole chromophore becomes twisted. The results of ab initio quantum chemical calculations indicate that for the final conformation of the chromophore center (t = 3 ns) the rhodopsin absorption maximum is shifted by 10 nm toward longer wavelengths as compared with the initial state (t = 0). In other words, the energy of transition of such a system into the excited singlet state S1 upon photon capture will be lower than that for the molecule where the β-ionone ring of the chromophore is coplanar to its polyene chain.  相似文献   

18.
Studies on a Missing Reaction in the Visual Cycle   总被引:1,自引:0,他引:1  
DEVELOPMENT in the biochemistry of vision during the past twenty-five years can be summarized by equations (1) and (2) in Fig. 1, which envisage1 that 11-cis-retinal combines with the visual protein opsin in a dark reaction to form the photolabile complex rhodopsin, λmax 497 nm. When rhodopsin absorbs light it stimulates, through a process whose mechanism is not understood, the transmission of impulses, which are responsible for the visual sensation, although much is known about the biochemical changes accompanying the absorption of light by rhodopsin. These changes culminate in the formation of all-trans-retinal (λmax 385 nm) and opsin (equation (2), Fig. 1), through a number of intermediates2 and for the completion of the cycle one needs a molecular process which may regenerate 11-cis-retinal from all-trans-retinal (equation (3), Fig. 1).  相似文献   

19.
The ultraviolet absorbance of squid and octopus rhodopsin changes reversibly at 234 nm and near 280 nm in the interconversion of rhodopsin and metarhodopsin. The absorbance change near 280 nm is ascribed to both protein and chromophore parts. Rhodopsin is photoregenerated from metarhodopsin via an intermediate, P380, on irradiation with yellow light (λ > 520 nm). The ultraviolet absorbance decreases in the change from rhodopsin to metarhodopsin and recovers in two steps; mostly in the process from metarhodopsin to P380 and to a lesser extent in the process from P380 to rhodopsin. P380 has a circular dichroism (CD) band at 380 nm and its magnitude is the same order as that of rhodopsin. Thus it is considered that the molecular structure of P380 is close to that of rhodopsin and that the chromophore is fixed to opsin as in rhodopsin. In the change from metarhodopsin to P380, the chromophore is isomerized from the all-trans to the 11-cis form, and the conformation of opsin changes to fit 11-cis retinal. In the change from P380 to rhodopsin, a small change in the conformation of the protein part and the protonation of the Schiff base, the primary retinal-opsin link, occur.  相似文献   

20.
The light-induced isomerization of the retinal from 11-cis to all-trans triggers changes in the conformation of visual rhodopsins that lead to the formation of the activated state, which is ready to interact with the G protein. To begin to understand how changes in the structure and dynamics of the retinal are transmitted to the protein, we performed molecular dynamics simulations of squid rhodopsin with 11-cis and all-trans retinal, and with two different force fields for describing the retinal molecule. The results indicate that structural rearrangements in the binding pocket, albeit small, propagate toward the cytoplasmic side of the protein, and affect the dynamics of internal water molecules. The sensitivity of the active-site interactions on the retinal force-field parameters highlights the coupling between the retinal molecule and its immediate protein environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号