首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tsetse flies transmit trypanosomes, the causative agent of human and animal African trypanosomiasis. The tsetse vector is extensively distributed across sub-Saharan Africa. Trypanosomiasis maintenance is determined by the interrelationship of three elements: vertebrate host, parasite and the vector responsible for transmission. Mapping the distribution and abundance of tsetse flies assists in predicting trypanosomiasis distributions and developing rational strategies for disease and vector control. Given scarce resources to carry out regular full scale field tsetse surveys to up-date existing tsetse maps, there is a need to devise inexpensive means for regularly obtaining dependable area-wide tsetse data to guide control activities. In this study we used spatial epidemiological modelling techniques (logistic regression) involving 5000 field-based tsetse-data (G. f. fuscipes) points over an area of 40,000 km2, with satellite-derived environmental surrogates composed of precipitation, temperature, land cover, normalised difference vegetation index (NDVI) and elevation at the sub-national level. We used these extensive tsetse data to analyse the relationships between presence of tsetse (G. f. fuscipes) and environmental variables. The strength of the results was enhanced through the application of a spatial autologistic regression model (SARM). Using the SARM we showed that the probability of tsetse presence increased with proportion of forest cover and riverine vegetation. The key outputs are a predictive tsetse distribution map for the Lake Victoria basin of Uganda and an improved understanding of the association between tsetse presence and environmental variables. The predicted spatial distribution of tsetse in the Lake Victoria basin of Uganda will provide significant new information to assist with the spatial targeting of tsetse and trypanosomiasis control.  相似文献   

2.
BackgroundGambian human African trypanosomiasis (gHAT) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by tsetse flies (Glossina). In Côte d’Ivoire, Bonon is the most important focus of gHAT, with 325 cases diagnosed from 2000 to 2015 and efforts against gHAT have relied largely on mass screening and treatment of human cases. We assessed whether the addition of tsetse control by deploying Tiny Targets offers benefit to sole reliance on the screen-and-treat strategy.Methodology and principal findingsIn 2015, we performed a census of the human population of the Bonon focus, followed by an exhaustive entomological survey at 278 sites. After a public sensitization campaign, ~2000 Tiny Targets were deployed across an area of 130 km2 in February of 2016, deployment was repeated annually in the same month of 2017 and 2018. The intervention’s impact on tsetse was evaluated using a network of 30 traps which were operated for 48 hours at three-month intervals from March 2016 to December 2018. A second comprehensive entomological survey was performed in December 2018 with traps deployed at 274 of the sites used in 2015. Sub-samples of tsetse were dissected and examined microscopically for presence of trypanosomes. The census recorded 26,697 inhabitants residing in 331 settlements. Prior to the deployment of targets, the mean catch of tsetse from the 30 monitoring traps was 12.75 tsetse/trap (5.047–32.203, 95%CI), i.e. 6.4 tsetse/trap/day. Following the deployment of Tiny Targets, mean catches ranged between 0.06 (0.016–0.260, 95%CI) and 0.55 (0.166–1.794, 95%CI) tsetse/trap, i.e. 0.03–0.28 tsetse/trap/day. During the final extensive survey performed in December 2018, 52 tsetse were caught compared to 1,909 in 2015, with 11.6% (5/43) and 23.1% (101/437) infected with Trypanosoma respectively.ConclusionsThe annual deployment of Tiny Targets in the gHAT focus of Bonon reduced the density of Glossina palpalis palpalis by >95%. Tiny Targets offer a powerful addition to current strategies towards eliminating gHAT from Côte d’Ivoire.  相似文献   

3.
Human activities modify ecosystem structure and function and can also alter the vital rates of vectors and thus the risk of infection with vector‐borne diseases. In the Maasai Steppe ecosystem of northern Tanzania, local communities depend on livestock and suitable pasture that is shared with wildlife, which can increase tsetse abundance and the risk of trypanosomiasis. We monitored the monthly tsetse fly abundance adjacent to Tarangire National Park in 2014–2015 using geo‐referenced, baited epsilon traps. We examined the effect of habitat types and vegetation greenness (NDVI) on the relative abundance of tsetse fly species. Host availability (livestock and wildlife) was also recorded within 100×100 m of each trap site. The highest tsetse abundance was found in the ecotone between Acacia‐Commiphora woodland and grassland, and the lowest in riverine woodland. Glossina swynnertoni was the most abundant species (68%) trapped throughout the entire study, while G. pallidipes was the least common (4%). Relative species abundance was negatively associated with NDVI, with greatest abundance observed in the dry season. The relationship with the abundance of wildlife and livestock was more complex, as we found positive and negative associations depending on the host and fly species. While habitat is important for tsetse distribution, hosts also play a critical role in affecting fly abundance and, potentially, trypanosomiasis risk.  相似文献   

4.
Tsetse flies, the vectors of trypanosomiasis, represent a threat to public health and economy in sub‐Saharan Africa. Despite these concerns, information on temporal and spatial dynamics of tsetse and trypanosomes remain limited and may be a reason that control strategies are less effective. The current study assessed the temporal variation of the relative abundance of tsetse fly species and trypanosome prevalence in relation to climate in the Maasai Steppe of Tanzania in 2014–2015. Tsetse flies were captured using odor‐baited Epsilon traps deployed in ten sites selected through random subsampling of the major vegetation types in the area. Fly species were identified morphologically and trypanosome species classified using PCR. The climate dataset was acquired from the African Flood and Drought Monitor repository. Three species of tsetse flies were identified: G. swynnertoni (70.8%), G. m. morsitans (23.4%), and G.pallidipes (5.8%). All species showed monthly changes in abundance with most of the flies collected in July. The relative abundance of G. m. morsitans and G. swynnertoni was negatively correlated with maximum and minimum temperature, respectively. Three trypanosome species were recorded: T. vivax (82.1%), T. brucei (8.93%), and T. congolense (3.57%). The peak of trypanosome infections in the flies was found in October and was three months after the tsetse abundance peak; prevalence was negatively correlated with tsetse abundance. A strong positive relationship was found between trypanosome prevalence and temperature. In conclusion, we find that trypanosome prevalence is dependent on fly availability, and temperature drives both tsetse fly relative abundance and trypanosome prevalence.  相似文献   

5.
Tsetse flies (Glossina spp.), the vector for African trypanosomiasis, are highly attracted by blue and black surfaces. This phototactic behaviour has long been exploited to trap tsetse flies as one measure in the control of African trypanosomiasis. However, why blue and black are so attractive for tsetse flies is still unknown. We propose that the combination of blue and black is attractive for many Glossina species because when searching for a shady resting place to pass the day, the flies are probably guided by the blueness and darkness of daytime shadows. In contrast to people's experience that daytime shadows are colourless, actually on a sunny day all shadows are tinted bluish by the scattered blue skylight.  相似文献   

6.
Abstract. Because human and animal cases of African trypanosomiasis have been reported in and around the city of Kinshasa for a long time, the likelihood of local transmission was examined. A georeferenced image of the city was produced, based on a satellite image (SPOT 4). Urban, peri-urban and rural areas were delineated. All recent data on captures of Glossina fuscipes quanzensis Pires (Diptera: Glossinidae) between 1999 and 2004, as well as epidemiological data on a 1999 outbreak of human trypanosomiasis by Trypanosoma brucei gambiense in the Kisenso District, were entered in a geographical information system (GIS). Tsetse flies were mainly found along some of the major rivers in the rural and peri-urban area of Kinshasa. Unsupervised classification of the satellite image allowed identification of riverine habitats suitable for tsetse flies and indicated sites where further entomological surveys were needed. The study produced strong indications that local transmission of human trypanosomiasis had occurred in the recent past in the peri-urban zone of Kinshasa.  相似文献   

7.

Background  

Tsetse flies transmit African trypanosomiasis leading to half a million cases annually. Trypanosomiasis in animals (nagana) remains a massive brake on African agricultural development. While trypanosome biology is widely studied, knowledge of tsetse flies is very limited, particularly at the molecular level. This is a serious impediment to investigations of tsetse-trypanosome interactions. We have undertaken an expressed sequence tag (EST) project on the adult tsetse midgut, the major organ system for establishment and early development of trypanosomes.  相似文献   

8.
BackgroundThe biology of adult tsetse (Glossina spp), vectors of trypanosomiasis in Africa, has been extensively studied – but little is known about larviposition in the field.Conclusions/SignificanceArtificial warthog burrows provide a novel method for collecting tsetse pupae, studying tsetse behaviour at larviposition, assessing the physiological status of female tsetse and their larvae, and of improving understanding of the physiological dynamics of terminal pregnancy, and population dynamics generally, with a view to improving methods of trypanosomiasis control.  相似文献   

9.
In large parts sub-Saharan Africa, tsetse flies, the vectors of African human or animal trypanosomiasis, are, or will in the foreseeable future, be confined to protected areas such as game or national parks. Challenge of people and livestock is likely to occur at the game/livestock/people interface of such infested areas. Since tsetse control in protected areas is difficult, management of trypanosomiasis in people and/or livestock requires a good understanding of tsetse population dynamics along such interfaces. The Nkhotakota Game Reserve, an important focus of human trypanosomiasis in Malawi, is a tsetse-infested protected area surrounded by a virtually tsetse-free zone. The abundance of tsetse (Glossina morsitans morsitans) along the interface, within and outside the game reserve, was monitored over 15 months using epsilon traps. A land cover map described the vegetation surrounding the traps. Few flies were captured outside the reserve. Inside, the abundance of tsetse at the interface was low but increased away from the boundary. This uneven distribution of tsetse inside the reserve is attributed to the uneven distribution of wildlife, the main host of tsetse, being concentrated deeper inside the reserve. Challenge of people and livestock at the interface is thus expected to be low, and cases of trypanosomiasis are likely due to people and/or livestock entering the reserve. Effective control of trypanosomiasis in people and livestock could be achieved by increasing the awareness among people of dangers associated with entering the reserve.  相似文献   

10.
In Burkina Faso, Glossina palpalis gambiensis Vanderplank and G. tachinoides Westwood (Diptera: Glossinidae) are the main cyclic vectors of trypanosomiasis. The vegetation type along river banks is an important factor determining the distribution and abundance of these tsetse. The following work investigated the relation between the plant species present (including the disturbance level) and tsetse distribution and abundance, using three ecotypes, described by P.C. Morel in 1978. These were the Guinean, Sudano-Guinean and Sudanese gallery forests. In the Mouhoun River basin, these three ecotypes are found successively from upstream to downstream. Berlinia grandiflora, Syzygium guineense and Cola laurifolia and finally Acacia seyal and Mitragyna inermis were the best indicators for the Guinean, Sudano-Guinean and Sudanese gallery forest ecotypes, respectively, as suggested by Morel. However, other species such as Pterocarpus santalinoides and Mimosa pigra were not ecotype specific. Trap catches confirmed that G. palpalis and G. tachinoides are predominant in Guinean and Sudanese gallery forests, respectively, and that both species are well represented in the Sudano-Guinean ecotype. Tsetse densities dropped significantly in disturbed Sudano-Guinean and Sudanese gallery forest sites. However, this was not the case for both species in Guinean or for G. tachinoides in half-disturbed Sudanese gallery forest sites, confirming their high resilience to human-made changes. The importance of a detailed consideration of riverine ecotypes when predicting tsetse densities is discussed.  相似文献   

11.
BackgroundTsetse flies (Glossina) transmit Trypanosoma brucei gambiense which causes Gambian human African trypanosomiasis (gHAT) in Central and West Africa. Several countries use Tiny Targets, comprising insecticide-treated panels of material which attract and kill tsetse, as part of their national programmes to eliminate gHAT. We studied how the scale and arrangement of target deployment affected the efficacy of control.Methodology and principal findingsBetween 2012 and 2016, Tiny Targets were deployed biannually along the larger rivers of Arua, Maracha, Koboko and Yumbe districts in North West Uganda with the aim of reducing the abundance of tsetse to interrupt transmission. The extent of these deployments increased from ~250 km2 in 2012 to ~1600 km2 in 2015. The impact of Tiny Targets on tsetse populations was assessed by analysing catches of tsetse from a network of monitoring traps; sub-samples of captured tsetse were dissected to estimate their age and infection status. In addition, the condition of 780 targets (~195/district) was assessed for up to six months after deployment. In each district, mean daily catches of tsetse (G. fuscipes fuscipes) from monitoring traps declined significantly by >80% following the deployment of targets. The reduction was apparent for several kilometres on adjacent lengths of the same river but not in other rivers a kilometre or so away. Expansion of the operational area did not always produce higher levels of suppression or detectable change in the age structure or infection rates of the population, perhaps due to the failure to treat the smaller streams and/or invasion from adjacent untreated areas. The median effective life of a Tiny Target was 61 (41.8–80.2, 95% CI) days.ConclusionsScaling-up of tsetse control reduced the population of tsetse by >80% across the intervention area. Even better control might be achievable by tackling invasion of flies from infested areas within and outside the current intervention area. This might involve deploying more targets, especially along smaller rivers, and extending the effective life of Tiny Targets.  相似文献   

12.

Background

In the savannahs of East and Southern Africa, tsetse flies (Glossina spp.) transmit Trypanosoma brucei rhodesiense which causes Rhodesian sleeping sickness, the zoonotic form of human African trypanosomiasis. The flies feed mainly on wild and domestic animals and are usually repelled by humans. However, this innate aversion to humans can be undermined by environmental stresses on tsetse populations, so increasing disease risk. To monitor changes in risk, we need traps designed specifically to quantify the responsiveness of savannah tsetse to humans, but the traps currently available are designed to simulate other hosts.

Methodology/Principal Findings

In Zimbabwe, two approaches were made towards developing a man-like trap for savannah tsetse: either modifying an ox-like trap or creating new designs. Tsetse catches from a standard ox-like trap used with and without artificial ox odor were reduced by two men standing nearby, by an average of 34% for Glossina morsitans morsitans and 56% for G. pallidipes, thus giving catches more like those made by hand-nets from men. Sampling by electrocuting devices suggested that the men stopped flies arriving near the trap and discouraged trap-entering responses. Most of human repellence was olfactory, as evidenced by the reduction in catches when the trap was used with the odor of hidden men. Geranyl acetone, known to occur in human odor, and dispensed at 0.2 mg/h, was about as repellent as human odor but not as powerfully repellent as wood smoke. New traps looking and smelling like men gave catches like those from men.

Conclusion/Significance

Catches from the completely new man-like traps seem too small to give reliable indices of human repellence. Better indications would be provided by comparing the catches of an ox-like trap either with or without artificial human odor. The chemistry and practical applications of the repellence of human odor and smoke deserve further study.  相似文献   

13.
The distribution and abundance of Glossina austeni Newstead and Glossina brevipalpis Newstead (Diptera: Glossinidae) were studied in the three main vegetation types in Zululand, KwaZulu-Natal, South Africa. During a period of 12 months, a trap transect consisting of 38 H-traps traversing the three vegetation types was monitored. The Index of Apparent Abundance (IAA) for G. brevipalpis was high in indigenous forest and open grassland but lower in exotic plantations. Glossina austeni, on the other hand, was captured mainly in or adjacent to indigenous forest. The seasonal trend in the IAA did not differ between vegetation types. The findings on the distribution of G. brevipalpis are in contrast with the historic records. Historically, this species was considered to be restricted to areas with a dense overhead canopy and high relative humidity. The repercussions of these findings for the epidemiology of livestock trypanosomiasis and the control of tsetse in Zululand are discussed.  相似文献   

14.
Abstract. The daily flight activity patterns of one of the main vectors of animal trypanosomiasis in West Africa, Glossina morsitans submorsitans , were assessed using four different methods. Results from all the methods showed that there was some flight activity nearly every hour in all seasons but they differed in the level of contact between grazing cattle herds and G.m.submorsitans. In the late dry season, trap data indicated that there was negligible activity from midday to late afternoon, whereas observations of tsetse contact with cattle herds or hand-net collections on herd followings showed no fall in attack rates on the cattle by G.m.submorsitans.
Differences between trap and animal-baited collection data may be attributable to the type of G.m.submorsitans sampled by each method. Male G.m.submorsitans captured by traps were more fat depleted than those caught on ox-baited flyrounds or by hand-net collections on herd followings. All methods showed that male G.m.submorsitans were most fat depleted in the late dry season and least in the early dry season. It was concluded that the traps were mainly sampling the spontaneous flights of G.m.submorsitans. Hunger and endogenous rhythms increase the likelihood of spontaneous flights towards dusk, particularly in conditions such as those at midday in the very hot, late dry season. However, the presence of cattle herds in infested habitats probably activated nearby G.m.submorsitans and the continual movement through the grazing areas ensured contact with tsetse throughout grazing.
The data indicated that strategic management of herd grazing times cannot eliminate the risk of trypanosomiasis transmission occurring, irrespective of the harshness of the dry season climate. An assessment of the level of this risk could only be measured suitably by collecting tsetse using animal-baited methods, not from trap data.  相似文献   

15.
BackgroundGlossina austeni and Glossina brevipalpis (Diptera: Glossinidae) are the sole cyclical vectors of African trypanosomes in South Africa, Eswatini and southern Mozambique. These populations represent the southernmost distribution of tsetse flies on the African continent. Accurate knowledge of infested areas is a prerequisite to develop and implement efficient and cost-effective control strategies, and distribution models may reduce large-scale, extensive entomological surveys that are time consuming and expensive. The objective was to develop a MaxEnt species distribution model and habitat suitability maps for the southern tsetse belt of South Africa, Eswatini and southern Mozambique.Methodology/Principal findingsThe present study used existing entomological survey data of G. austeni and G. brevipalpis to develop a MaxEnt species distribution model and habitat suitability maps. Distribution models and a checkerboard analysis indicated an overlapping presence of the two species and the most suitable habitat for both species were protected areas and the coastal strip in KwaZulu-Natal Province, South Africa and Maputo Province, Mozambique. The predicted presence extents, to a small degree, into communal farming areas adjacent to the protected areas and coastline, especially in the Matutuíne District of Mozambique. The quality of the MaxEnt model was assessed using an independent data set and indicated good performance with high predictive power (AUC > 0.80 for both species).Conclusions/SignificanceThe models indicated that cattle density, land surface temperature and protected areas, in relation with vegetation are the main factors contributing to the distribution of the two tsetse species in the area. Changes in the climate, agricultural practices and land-use have had a significant and rapid impact on tsetse abundance in the area. The model predicted low habitat suitability in the Gaza and Inhambane Provinces of Mozambique, i.e., the area north of the Matutuíne District. This might indicate that the southern tsetse population is isolated from the main tsetse belt in the north of Mozambique. The updated distribution models will be useful for planning tsetse and trypanosomosis interventions in the area.  相似文献   

16.
A field trial in Zimbabwe investigated the efficacy of insecticide-treated cattle as a barrier to prevent the re-invasion of tsetse, Glossina morsitans and G. pallidipes (Diptera: Glossinidae), into cleared areas. The original tsetse barrier consisted of insecticide-treated odour-baited targets, at an operational density of four to five targets per km2, supported by insecticide-treatments of cattle with either deltamethrin dip (Decatix, Coopers) at two-weekly intervals, or deltamethrin pouron (Spoton, Coopers) at monthly intervals, in a band approximately 20 km wide from the re-invasion front. Tsetse catch, and trypanosomiasis incidence in nine sentinel herds was recorded for 7-8 months, respectively, before the targets were removed, leaving only the insecticide treatment of the local cattle to stem the re-invasion of tsetse. After the removal of the target barrier, the tsetse readily invaded the trial area and the incidence of trypanosomiasis in sentinel herds increased, while their PCVs decreased. After seven months without the targets in place, trypanosomiasis prevalence in the local stock had reached alarmingly high levels; the trial was terminated prematurely and the target barrier re-deployed. Immediately after the re-deployment of the target barrier, the tsetse catch in the trial area reverted to acceptable levels along the re-invasion front, and trypanosomiasis incidence in the sentinel cattle decreased. It is concluded that, under the conditions of the field trial, the insecticidal treatment of local cattle did not in itself form an effective barrier to tsetse re-invasion. By contrast, the target barrier performed as was predicted by mathematical and experimental analysis, and readily cleared the tsetse infestation and reduced trypanosomosis incidence in the trial area.  相似文献   

17.
Tsetse control has long been an important option for reducing the impact of African trypanosomiasis but, although many effective methods have been used, the results have seldom proved sustainable. Developments to reduce cost and environmental impact increasingly limit the choices available for control and the scale of operations has declined. Conversely, human trypanosomiasis has reached epidemic proportions in some countries. Here, Reg Allsopp argues that those tasked with managing trypanosomiasis or committed to poverty alleviation in Africa should consider large-scale, area-wide tsetse control involving all proven methods, including aerial spraying and the sterile insect technique.  相似文献   

18.
In the the early 1970s the Egbe area of Nigeria was known to be one of high trypanosomiasis risk, with four Glossina species G. morsitans submorsitans Newstead, G.longipalpis Wiedemann, G.palpalis palpalis Robineau-Desvoidy and G.tachinoides Westwood present. Grazing by Fulani pastoralists used to be short-term and only in the dry season. In recent years these pastoralists have grazed their cattle in the area throughout the year and this has prompted a reappraisal of the tsetse situation. Tsetse populations were sampled for 3 years using hand-net catches from man or an ox and biconical traps. Resident livestock, slaughter cattle and some of the flies were examined for trypanosome infection. Of the four tsetse species previously reported from the area, only the riverine species, G.p.palpalis and G.tachinoides, were encountered during the investigation. None of the 152 G.p.palpalis and 52 G.tachinoides examined was infected with trypanosomes. No infection was detected in 101 slaughtered cattle, 65 live Muturu, twelve goats and two pigs by wet film examination. However, a 14.3% Trypanosoma vivax infection rate was detected by Haematocrit Centrifugation Technique (HCT) examination in twenty-one slaughtered cattle. Increased human activities over the years had destroyed much of the vegetation and depleted the wild-life population to an extent that resulted in the disappearance of G.m.submorsitans and G.longipalpis, resulting in turn in a greatly reduced trypanosomiasis risk. It is likely that a similar trend is occurring in other areas of the Derived Savanna and Forest zones of West Africa as the human population expands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
African trypanosomiasis (AT) is a neglected disease of both humans and animals caused by Trypanosoma parasites, which are transmitted by obligate hematophagous tsetse flies (Glossina spp.). Knowledge on tsetse fly vertebrate hosts and the influence of tsetse endosymbionts on trypanosome presence, especially in wildlife-human-livestock interfaces, is limited. We identified tsetse species, their blood-meal sources, and correlations between endosymbionts and trypanosome presence in tsetse flies from the trypanosome-endemic Maasai Mara National Reserve (MMNR) in Kenya. Among 1167 tsetse flies (1136 Glossina pallidipes, 31 Glossina swynnertoni) collected from 10 sampling sites, 28 (2.4%) were positive by PCR for trypanosome DNA, most (17/28) being of Trypanosoma vivax species. Blood-meal analyses based on high-resolution melting analysis of vertebrate cytochrome c oxidase 1 and cytochrome b gene PCR products (n = 354) identified humans as the most common vertebrate host (37%), followed by hippopotamus (29.1%), African buffalo (26.3%), elephant (3.39%), and giraffe (0.84%). Flies positive for trypanosome DNA had fed on hippopotamus and buffalo. Tsetse flies were more likely to be positive for trypanosomes if they had the Sodalis glossinidius endosymbiont (P = 0.0002). These findings point to complex interactions of tsetse flies with trypanosomes, endosymbionts, and diverse vertebrate hosts in wildlife ecosystems such as in the MMNR, which should be considered in control programs. These interactions may contribute to the maintenance of tsetse populations and/or persistent circulation of African trypanosomes. Although the African buffalo is a key reservoir of AT, the higher proportion of hippopotamus blood-meals in flies with trypanosome DNA indicates that other wildlife species may be important in AT transmission. No trypanosomes associated with human disease were identified, but the high proportion of human blood-meals identified are indicative of human African trypanosomiasis risk. Our results add to existing data suggesting that Sodalis endosymbionts are associated with increased trypanosome presence in tsetse flies.  相似文献   

20.
Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.

This study shows that tsetse flies, vectors of African trypanosomiasis, are highly susceptible to killing by nitisinone, a tyrosine catabolism inhibitor currently used to treat human metabolic diseases; this environment-friendly drug could facilitate elimination of African trypanosomiasis and other diseases transmitted by blood feeding insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号