首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu  Hongli  Liang  Shengnan  Hu  Junjie  Liu  Wentong  Dong  Zhiqiang  Wei  Shaozhong 《Molecular biology reports》2022,49(3):1661-1668
Molecular Biology Reports - The mortality rate of colorectal cancer (CRC) remains high in developing countries. Interventions that can inhibit the proliferation of tumor cells represent promising...  相似文献   

2.
3.
Normally, hepatic progenitor cells (HPCs) are activated and differentiate into hepatocytes or bile ductular cells to repair liver damage during liver injury. However, it remains controversial whether the abnormal differentiation of HPCs occurs under abnormal conditions. Lipopolysaccharide (LPS), a component of the microenvironment, promotes liver fibrosis. In the present study, HPCs promoted liver fibrosis in rats following carbon tetrachloride (CCl4) treatment. Meanwhile, the LPS level in the portal vein was elevated and played a primary role in the fate of HPCs. In vitro, LPS inhibited the hepatobiliary differentiation of HPCs. Concurrently, HPCs co-cultured with LPS for 2 weeks showed a tendency to differentiate into myofibroblasts (MFs). Thus, we conclude that LPS promotes the aberrant differentiation of HPCs into MFs as a third type of descendant. This study provides insight into a novel differentiation fate of HPCs in their microenvironment, and could thus lead to the development of HPCs for treatment methods in liver fibrosis.  相似文献   

4.
Adhesion and degranulation-promoting adapter protein (ADAP) is a multifunctional scaffold that regulates T cell receptor-mediated activation of integrins via association with the SKAP55 adapter and the NF-κB pathway through interactions with both the CARMA1 adapter and serine/threonine kinase transforming growth factor β-activated kinase 1 (TAK1). ADAP-deficient T cells exhibit impaired proliferation following T cell receptor stimulation, but the contribution of these distinct functions of ADAP to this defect is not known. We demonstrate that loss of ADAP results in a G1-S transition block in cell cycle progression following T cell activation due to impaired accumulation of cyclin-dependent kinase 2 (Cdk2) and cyclin E. The CARMA1-binding site in ADAP is critical for mitogen-activated protein (MAP) kinase kinase 7 (MKK7) phosphorylation and recruitment to the protein kinase C θ (PKCθ) signalosome and subsequent c-Jun kinase (JNK)-mediated Cdk2 induction. Cyclin E expression following T cell receptor stimulation of ADAP-deficient T cells is transient and associated with enhanced cyclin E ubiquitination. Both the CARMA1- and TAK1-binding sites in ADAP are critical for restraining cyclin E ubiquitination and turnover independently of ADAP-dependent JNK activation. T cell receptor-mediated proliferation was most dramatically impaired by the loss of ADAP interactions with CARMA1 or TAK1 rather than SKAP55. Thus, ADAP coordinates distinct CARMA1-dependent control of key cell cycle proteins in T cells.  相似文献   

5.
Ming Chen  Jiaxing Liu  Wenqi Yang 《Autophagy》2017,13(11):1813-1827
Bacterial translocation and lipopolysaccharide (LPS) leakage occur at a very early stage of liver fibrosis in animal models. We studied the role of LPS in hepatic stellate cell (HSC) activation and the underlying mechanisms in vitro and in vivo. Herein, we demonstrated that LPS treatment led to a dramatic increase in autophagosome formation and autophagic flux in LX-2 cells and HSCs, which was mediated through the AKT-MTOR and AMPK-ULK1 pathway. LPS significantly decreased the lipid content, including the lipid droplet (LD) number and lipid staining area in HSCs; pretreatment with macroautophagy/autophagy inhibitors or silencing ATG5 attenuated this decrease. Furthermore, lipophagy was induced by LPS through the autophagy-lysosomal pathway in LX-2 cells and HSCs. Additionally, LPS-induced autophagy further reduced retinoic acid (RA) signaling, as demonstrated by a decrease in the intracellular RA level and Rar target genes, resulting in the downregulation of Bambi and promoting the sensitization of the HSC's fibrosis response to TGFB. Compared with CCl4 injection alone, CCl4 plus LPS injection exaggerated liver fibrosis in mice, as demonstrated by increased Col1a1 (collagen, type I, α 1), Acta2, Tgfb and Timp1 mRNA expression, ACTA2/α-SMA and COL1A1 protein expression, and Sirius Red staining area, which could be attenuated by injection of an autophagy inhibitor. LPS also reduced lipid content in HSCs in vivo, with this change being attenuated by chloroquine (CQ) administration. In conclusion, LPS-induced autophagy resulted in LD loss, RA signaling dysfunction, and downregulation of the TGFB pseudoreceptor Bambi, thus sensitizing HSCs to TGFB signaling.  相似文献   

6.
Lamina-associated polypeptide (LAP) 2alpha is a nonmembrane-bound LAP2 isoform that forms complexes with nucleoplasmic A-type lamins. In this study, we show that the overexpression of LAP2alpha in fibroblasts reduced proliferation and delayed entry into the cell cycle from a G0 arrest. In contrast, stable down-regulation of LAP2alpha by RNA interference accelerated proliferation and interfered with cell cycle exit upon serum starvation. The LAP2alpha-linked cell cycle phenotype is mediated by the retinoblastoma (Rb) protein because the LAP2alpha COOH terminus directly bound Rb, and overexpressed LAP2alpha inhibited E2F/Rb-dependent reporter gene activity in G1 phase in an Rb-dependent manner. Furthermore, LAP2alpha associated with promoter sequences in endogenous E2F/Rb-dependent target genes in vivo and negatively affected their expression. In addition, the expression of LAP2alpha in proliferating preadipocytes caused the accumulation of hypophosphorylated Rb, which is reminiscent of noncycling cells, and initiated partial differentiation into adipocytes. The effects of LAP2alpha on cell cycle progression and differentiation may be highly relevant for the cell- and tissue-specific phenotypes observed in laminopathic diseases.  相似文献   

7.
There has been an increasing number of studies about microRNAs as key regulators in the development of hepatic fibrosis. Here, we demonstrate that miR-542-3p can promote hepatic fibrosis by downregulating the expression of bone morphogenetic protein 7 (BMP-7), which is known to antagonize transforming growth factor β1 (TGFβ1)-mediated fibrogenesis effect. The expression of miR-542-3p is increased in activated hepatic stellate cells (HSCs). Downregulation of MiR-542-3p by antisense inhibitors can inhibit HSCs activation markers, including α-smooth muscle actin (α-SMA) and collagen as well as TGFβ signaling pathways. MiR-542-3p was significantly upregulated in carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice, and downregulation of miR-542-3p by lentivirus could prevent the development of hepatic fibrosis. In addition, miR-542-3p can directly bind to the 3′-untranslated region of BMP-7 mRNA, indicating that its profibrotic effect appears to be caused by its inhibition of BMP-7. Our results suggest that downregulation of miR-542-3p prevents liver fibrosis both in vitro and in vivo, highlighting its potential as a novel biomarker or therapeutic target for hepatic fibrosis.  相似文献   

8.
Hepatic stellate cells (HSC), the key fibrogenic cells of the liver, transdifferentiate into myofibroblasts upon phagocytosis of apoptotic hepatocytes. Galectin-3, a β-galactoside-binding lectin, is a regulator of the phagocytic process. In this study, our aim was to study the mechanism by which extracellular galectin-3 modulates HSC phagocytosis and activation. The role of galectin-3 in engulfment was evaluated by phagocytosis and integrin binding assays in primary HSC. Galectin-3 expression was studied by real-time PCR and enzyme-linked immunosorbent assay, and in vivo studies were done in wild-type and galectin-3(-/-) mice. We found that HSC from galectin-3(-/-) mice displayed decreased phagocytic activity, expression of transforming growth factor-β1, and procollagen α1(I). Recombinant galectin-3 reversed this defect, suggesting that extracellular galectin-3 is required for HSC activation. Galectin-3 facilitated the α(v)β(3) heterodimer-dependent binding, indicating that galectin-3 modulates HSC phagocytosis via cross-linking this integrin and enhancing the tethering of apoptotic cells. Blocking integrin α(v)β(3) resulted in decreased phagocytosis. Galectin-3 expression and release were induced in active HSC engulfing apoptotic cells, and this was mediated by the nuclear factor-κB signaling. The upregulation of galectin-3 in active HSC was further confirmed in vivo in bile duct-ligated (BDL) rats. Galectin-3(-/-) mice displayed significantly decreased fibrosis, with reduced expression of α-smooth muscle actin and procollagen α1(I) following BDL. In summary, extracellular galectin-3 plays a key role in liver fibrosis by mediating HSC phagocytosis, activation, and subsequent autocrine and paracrine signaling by a feedforward mechanism.  相似文献   

9.
10.
The present study was to investigate the inhibitory effect of methyl helicterate (MH) on hepatic stellate cells (HSC-T6), primarily elucidating the underlying mechanism of MH against liver fibrosis. HSC-T6 cells were activated by platelet-derived growth factor (PDGF) stimulation, and then the effects of MH on cell viability, cytomembrane integrity, colony, migration, apoptosis, and cell cycle were detected. Moreover, the regulative mechanism of MH on HSCs was investigated by detecting the activation of the extracellular signal-regulated kinase (ERK1/2) signaling pathway. The results showed that MH significantly inhibited HSC-T6 cell viability and proliferation in a concentration-dependent manner. It notably promoted the release of lactate dehydrogenase, destroying cell membrane integrity. MH also markedly inhibited HSC-T6 cell clonogenicity and migration. Moreover, MH treatment significantly induced cell apoptosis and arrested cell cycle at the G2 phase. The further study showed that MH inhibited the expression of ERK1, ERK2, c-fos, c-myc, and Ets-1, blocking the ERK1/2 pathway. In conclusion, this study demonstrates that MH significantly inhibits HSC activation and promotes cell apoptosis via downregulation of the ERK1/2 signaling pathway.  相似文献   

11.
Ji H  Meng Y  Zhang X  Luo W  Wu P  Xiao B  Zhang Z  Li X 《Regulatory peptides》2011,169(1-3):13-20
The RhoA/ROCK-2 signaling pathway is necessary for activated hepatic stellate cell (HSC) contraction. HSC contraction plays an important role in the pathogenesis of cirrhosis and portal hypertension. This study investigated whether aldosterone contributes to HSC contraction by activation of the RhoA/ROCK-2 signaling pathway. Primary HSCs were isolated from Sprague-Dawley rats via in situ pronase/collagenase perfusion. We found that aldosterone enhanced the contraction of a collagen lattice seeded with HSCs. This induced contraction was suppressed by the mineralcorticoid receptor (MR) inhibitor spironolactone, the ROCK-2 inhibitor Y27632, and the angiotensin II type 1 receptor (AT(1)R) inhibitor irbesartan. Moreover, actin fiber staining showed that aldosterone significantly increased actin fiber formation in HSCs. Pre-incubating with spironolactone, Y27632, or irbesartan inhibited the aldosterone-induced actin fiber reorganization. Molecularly, the effect of aldosterone on activation of HSC contraction was mediated by phosphorylated myosin light chain (P-MLC) through the RhoA/ROCK-2 signaling pathway. All these inhibitors had the ability to block aldosterone-induced protein expressions in the RhoA/ROCK-2/P-MLC cascade in HSCs. Taken together, our current study suggests that aldosterone induces contraction of activated HSCs through the activation of the RhoA/ROCK-2 signaling pathway. This finding may provide a potential therapeutic target for control of cirrhosis and portal hypertension.  相似文献   

12.
We have recently shown that exposure of human keratinocytes to physiologic doses of ultraviolet B (UVB) activates epidermal growth factor receptor (EGFR)/extracellular-regulated kinases 1 and 2 (ERK1/2) and p38 signaling pathways via reactive oxygen species, an effect that can be modulated by antioxidants. Trolox, a water-soluble vitamin E analog, is among the antioxidants that are currently being investigated for their preventive and protective potential against harmful effects of UV radiation to the skin. We found that Trolox inhibits both basal and UVB-induced intracellular H(2)O(2) generation in primary keratinocytes in a concentration-dependent manner. Trolox did not significantly affect UVB-induced phosphorylation of EGFR. Stronger inhibition was observed for ERK1/2 activation at lower, and for p38 activation at higher, concentrations of Trolox added to cells before exposure to UVB. Similarly different effects were found with regard to length of pretreatment with Trolox before UVB exposure-increasing inhibition for ERK1/2 activation at shorter, and for p38 activation at longer, pretreatment intervals. UVB-induced c-jun-N-terminal kinase activation was potently suppressed by Trolox. Also, increasing the pretreatment time of Trolox decreased the rate of cell death following UVB. In conclusion, UVB-induced signaling pathway activation is differentially modulated by Trolox. Further investigation into the time-dependent biologic activation of Trolox and its metabolic products, and modulation of signal transduction with cell outcome should facilitate development of rational strategies for pharmacologic applications.  相似文献   

13.
Tat, the transactivator of HIV-1 gene expression, is released by acutely HIV-1-infected T-cells and promotes adhesion, migration, and growth of inflammatory cytokine-activated endothelial and Kaposi's sarcoma cells. It has been previously demonstrated that these effects of Tat are due to its ability to bind through its arginine-glycine-aspartic (RGD) region to the alpha5beta1 and alphavbeta3 integrins. However, the signaling pathways linking Tat to the regulation of cellular functions are incompletely understood. Here, we report that Tat ligation on human endothelial cells results in the activation of the small GTPases Ras and Rac and the mitogen-activated protein kinase ERK, specifically through its RGD region. In addition, we demonstrated that Tat activation of Ras, but not of Rac, induces ERK phosphorylation. We also found that the receptor proximal events accompanying Tat-induced Ras activation are mediated by tyrosine phosphorylation of Shc and recruitment of Grb2. Moreover, Tat enabled endothelial cells to progress through the G1 phase in response to bFGF, and the process is linked to ERK activation. Taken together, these data provide novel evidence about the ability of Tat to activate the Ras-ERK cascade which may be relevant for endothelial cell proliferation and for Kaposi's sarcoma progression.  相似文献   

14.
Hepatic fibrosis is a chronic inflammatory and reversible repair reaction of the liver under the continuous action of virus or various injuries. In this study, we aimed at identifying the role of miR-326 in the hepatic stellate cell (HSC) activation and liver fibrosis and its potential mechanism. In this study, the liver fibrosis mouse model was developed by injecting CCl4. Liver tissue morphology was observed and the expression level of α-smooth muscle actin, collagen1α1 and miR-326 was measured. Target gene identification was performed by loss-of-function and gain-of-function. The effect of miR-326 on the expression level of the cytokines associated with the TLR4/MyD88/nuclear factor-κB (NF-κB) pathway was assessed in vitro and in vivo. We show that miR-326 was downregulated in CCl4-induced fibrotic mice and activated HSCs. The target gene of miR-326 is TLR4. Moreover, miR-326 inhibited the activation of HSCs in vitro through TLR4/MyD88/NF-κB signaling. miR-326 attenuated hepatic fibrosis and inflammation of CCl4-induced mice in vivo. Our results demonstrate for the first time that miR-326 inhibits HSC activation through TLR4/MyD88/NF-κB signaling. Furthermore, miR-326 plays critical roles in attenuating liver fibrosis and inflammation, suggesting the therapeutic potential of miRNAs.  相似文献   

15.
16.
17.
As an outcome of chronic liver disease, liver fibrosis involves the activation of hepatic stellate cells (HSCs) caused by a variety of chronic liver injuries. It is important to explore approaches to inhibit the activation and proliferation of HSCs for the treatment of liver fibrosis. PLK1 is overexpressed in many human tumour cells and has become a popular drug target in tumour therapy. Therefore, further study of the function of PLK1 in the cell cycle is valid. In the present study, we found that PLK1 expression was elevated in primary HSCs isolated from CCl4‐induced liver fibrosis mice and LX‐2 cells stimulated with TGF‐β1. Knockdown of PLK1 inhibited α‐SMA and Col1α1 expression and reduced the activation of HSCs in CCl4‐induced liver fibrosis mice and LX‐2 cells stimulated with TGF‐β1. We further showed that inhibiting the expression of PLK1 reduced the proliferation of HSCs and promoted HSCs apoptosis in vivo and in vitro. Furthermore, we found that the Wnt/β‐catenin signalling pathway may be essential for PLK1‐mediated HSCs activation. Together, blocking PLK1 effectively suppressed liver fibrosis by inhibiting HSC activation, which may provide a new treatment strategy for liver fibrosis.  相似文献   

18.
19.
20.
Uveal melanoma (UM) is the most common form of primary intraocular malignancy in adult and has the tendency to metastasize. BAP1 mutations are frequently found in UM and are associated with a poor prognosis. The role of BAP1 in cell cycle regulation is currently a research highlight, but its underlying mechanism is not well understood. Here, we report that BAP1 knockdown can lead to G1 arrest and is accompanied by a decrease in the expression of S phase genes in OCM1 cells. Furthermore, in chromatin immunoprecipitation experiments, BAP1 could bind to E2F1 responsive promoters and the localization of BAP1 to E2F1-responsive promoters is host cell factor-1 dependent. Moreover, BAP1 knockdown leads to increased H2AK119ub1 levels on E2F responsive promoters. Together, these results provide new insight into the mechanisms of BAP1 in cell cycle regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号