首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
Using the perfusion method, we compared cadmium accumulation and influx across the gills of the euryhaline Chinese mitten crab Eriocheir sinensis, exposed to 4.8 microM cadmium in the incubation medium (OUT). Cadmium influx was not observed across posterior gills while it ranged from 0.15 to 6.82 nmol Cd g(-1) gill w.w. h(-1) across anterior ones. For these respiratory gills, a strong increase (40 times) was observed when calcium was removed in both incubation and perfusion media while the lack of sodium in the perfusion medium resulted in a 46 times decrease. For crabs acclimated 15 days to artificial seawater, cadmium influx across anterior gills showed a 21 times decrease when compared with freshwater acclimated ones. On the other hand, after 3 h of perfusion, we detected cadmium accumulation in both types of gills, ranging from 3.8 to 68 nmol Cd g(-1) gill w.w. in anterior gills and from 2.1 to 39 nmol Cd g(-1) gill w.w. in posterior ones. Such accumulations represent between 61.3 and 100% of the total uptake of cadmium through the gills. From these results, we suggest that cadmium can penetrate more easily into the hemolymph space through the 'respiratory' type epithelium present in the anterior gills but absent in the posterior ones. This metal uptake is likely to occur at least in part through the same pathways as calcium. On the contrary, cadmium seems to be sequestered inside the posterior gills, perhaps in the cuticle of the salt-transporting type epithelium.  相似文献   

2.
  • 1.1. The movements of Cl−1 have been studied in the so-called anterior and posterior gills of E. sinensis using radioactive 36Cl−1.
  • 2.2. The anterior gills hardly show any significant movements of Cl−1. They thus have a very low (if any) permeability to that ion. On the contrary, the posterior gills show both passive fluxes and an active inward movement of Cl−1.
  • 3.3. The Cl−1 influx in the posterior gills is largely sensitive to the amount of K+ in the perfusion saline.
  相似文献   

3.
The effect of water salinity and ions on metallothionein-like proteins (MTLP) concentration was evaluated in the blue crab Callinectes sapidus. MTLP concentration was measured in tissues (hepatopancreas and gills) of crabs acclimated to salinity 30 ppt and abruptly subjected to a hypo-osmotic shock (salinity 2 ppt). It was also measured in isolated gills (anterior and posterior) of crabs acclimated to salinity 30 ppt. Gills were perfused with and incubated in an isosmotic saline solution (ISS) or perfused with ISS and incubated in a hypo-osmotic saline solution (HSS). The effect of each single water ion on gill MTLP concentration was also analyzed in isolated and perfused gills through experiments of ion substitution in the incubation medium. In vivo, MTLP concentration was higher in hepatopancreas than in gills, being not affected by the hypo-osmotic shock. However, MTLP concentration in posterior and anterior gills significantly increased after 2 and 24 h of hypo-osmotic shock, respectively. In vitro, it was also increased when anterior and posterior gills were perfused with ISS and incubated in HSS. In isolated and perfused posterior gills, MTLP concentration was inversely correlated with the calcium concentration in the ISS used to incubate gills. Together, these findings indicate that an increased gill MTLP concentration in low salinity is an adaptive response of the blue crab C. sapidus to the hypo-osmotic stress. This response is mediated, at least in part, by the calcium concentration in the gill bath medium. The data also suggest that the trigger for this increase is purely branchial and not systemic.  相似文献   

4.
When isolated gills of the shore crabCarcinus maenas were bathed and perfused with identical solutions on both sides (50 % sea water), a spontaneous transepithelial potential difference (PD) of some millivolts (hemolymph side negative) was established. This PD is of active nature and requires the metabolism of the living cell, since it uses its own sources of energy in addition to organic nutrients offered in the flow of artificial hemolymph. Addition of sodium cyanide and dinitrophenole to bathing and perfusion medium resulted in reversible breakdown of PDs in a concentration-dependent mode. In posterior gills ofC. maenas, the potential differences were more negative compared to data measured in anterior gills of the same individuals. These results are correlated with higher specific activities of Na-K-ATPase in posterior gills. Experiments with triamterene indicate that sodium uptake inC. maenas is sensitive to this diuretic drug, when applied on the apical side of the epithelial cell. The results obtained show that active uptake of sodium from medium to blood across the gills is performed by a complex mechanism including participation of several basal and apical transport steps.  相似文献   

5.
The distribution of different phospholipids and their variation in fatty acids composition were studied in mitochondrial fractions isolated from anterior and posterior gills of the two euryhaline crabs, Enocheir sinensis and Carcinus maenas, as a function of the environmental salinity. No matter what the salinity, the three more posterior located gills of E. sinensis were shown to contain more unsaturated phospholipids (PE, DPG) and more eicosapentaanoic acids (20:5ω 3) than the three more anterior ones. This was particularly significant when crabs were acclimatized to fresh water. The lipid content of the anterior and posterior gills of the seashore crab C. maenas, on the contrary, showed no significant differences. These results are discussed by taking into consideration the different osmo- and ion-regulation capabilities of the two euryhaline crabs studied and it is proposed that a possible viscotropic regulation might check the activity of membrane-bound enzymes among which the (Na+ + K+)-ATPase related to the Na+-active transport processes involved in maintaining Na+ balance.  相似文献   

6.
Isolated posterior gills of shore crabs,Carcinus maenas, previously acclimated for at least 1 month to brackish water of 10 S, were connected with an artificial hemolymph circulation by means of thin polyethylene tubings. Gills were symmetrically perfused and bathed with 50 % sea water. Transepithelial potential differences (PDs) and fluxes of sodium between medium and blood were measured under control conditions and following reductions of PDs by means of 5 mM internal (blood side) ouabain, 0.5 mM internal and external (bathing medium) NaCN or by exhaustion of energy reserves along with a prolonged perfusion period of more than 9 h. In these experiments22Na was used as tracer. Each of the three modes of reducing transepithelial potential differences resulted in a decrease in sodium influxes from 500–1000 µmoles g–1 h–1 to 250–400 µmoles g–1 h–1. The findings suggest that sodium influx, which normally greatly exceeds efflux, was diminished by its active component. The remaining non-inhibitable influx equals efflux values. Our findings thus indicate that efflux is completely passive, while influx has — beside a passive component of efflux magnitudes — an additional active portion which is much larger than the passive component. Since ouabain is a specific inhibitor of the Na-K-ATPase, our results confirm previous findings (Siebers et al., 1985) that the basolaterally located Na-K-ATPase generates the transepithelial potential difference in the gills, which is inside negative by about 6–12 mV. Inhibition of the active portion of sodium influx by internal ouabain along with reduced PDs suggests that transepithelial PDs generated by the branchial sodium pump are the driving force for active sodium uptake in hyperregulating brackish water crabs.  相似文献   

7.
  • 1.1. Specific activity and kinetic characteristics of the (Na+ + K+)ATPase have been investigated in the gill epithelium of the hyper-hypoosmoregulator crab Uca minax.
  • 2.2. (Na+ +K+)ATPase activity is shown to be at least three times higher in the posterior gills.
  • 3.3. The kinetic study supports the hypothesis of the existence of two different (Na+ + K+)ATPases: the enzyme activity in the posterior gills could be involved in the transepithelial transport of Na+ while the activity of the anterior gills could be responsible for the intracellular regulation of Na+ and K+.
  • 4.4. Significant and specific changes in (Na+ +K+)ATPase activity occur upon acclimation to media of various salinities.
  相似文献   

8.
9.
The occurrence, localization and response to environmental salinity changes of Na+-K+ATPase activity were studied in each of the individual gills 4-8 of the euryhaline crab Cyrtograpsus angulatus from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Na+-K+ATPase activity appeared to be differentially sensitive to environmental salinity among gills. Upon an abrupt change to low salinity, a differential response of Na+-K+ATPase activity occurred in each individual gill which could suggest a differential role of this enzyme in ion transport process in the different gills of C. angulatus. With the exception of gill 8, a short-term increase of Na+-K+ATPase specific activity was observed in posterior gills, which is similar to adaptative variations of this activity described in other euryhaline crabs. However, and conversely to that described in other hyperregulating crabs, the highest increase of activity occurred in anterior gills 4 by 1 day after the change to dilute media which could suggest also a role for these gills in ion transport processes in C. angulatus. The fact that variations of Na+-K+ATPase activity in anterior and posterior gills were concomitant with the transition to hyperregulation indicate that this enzyme could be a component of the branchial ionoregulatory mechanisms at the biochemical level in this crab. The results suggest a differential participation of branchial Na+-K+ATPase activity in ionoregulatory mechanisms of C. angulatus. The possible existence of functional differences as well as distinct regulation mechanisms operating in individual gills is discussed.  相似文献   

10.
1. Dopamine and dibutyryl cAMP induce a significant hyperpolarization when the so-called anterior and posterior gills isolated from the crab Eriocheir sinensis acclimated to freshwater are perfused with the same saline on both sides.2. When compared to the anterior ones, the posterior gills show higher concentrations of fructose 2,6-biphosphate (Fru 2,6-bP) and a lower ATP/ADP ratio.3. Perfusion with a freshwater or seawater saline decreases both the level of Fru 2,6-bP and the ATP/JADP ratio whereas dopamine and dibutyryl cAMP significantly increase the Fru 2,6-bP content for the posterior and the anterior gills.  相似文献   

11.
The fatty acid composition of the different classes of phospholipids isolated from 10,000 g fractions of posterior and anterior gills of fresh water-acclimatized Chinese crabs (Enocheir sinensis) has been analysed by two-dimensional TLC and GLC. All the phospholipids, especially PE and DPG, contain large amounts of long chain, polyunsaturated fatty acids. In PC and PE of both the anterior and posterior gills, polyenic fatty acids (particularly the ω-3-acid family) were found to be mainly incorporated in the 2-positon of the glycerol molecule. The ω-3-fatty acids/ω-6-fatty acids ratio in each class of phospholipids is higher in the posterior gills than in the anterior ones. The sum of polyunsaturated fatty acids and the unsaturation index of DPG are more important in the posterior gills than in the anterior ones. It is suggested that negatively charged unsaturated DPG and that the contrast of activities of ω-6- and ω-3-acids found in phospholipids provide a suitable lipid environment for optimal activity of the transport mechanisms at work in posterior gills of the Chinese crab.  相似文献   

12.
Cl absorption across isolated, perfused gills of freshwater adapted Chinese crabs (Eriocheir sinensis) was analysed by measuring transepithelial potential differences (PDte) and radioactive tracer fluxes across isolated, perfused posterior gills. Applying hemolymph-like NaCl salines on both sides of the epithelium PDte amounted to −30±1 mV (n=14). Undirectional Cl influxes of 470±38 and effluxes of 245±27 μmol·hr−1·g−1 wet weight (ww) (n=14) resulted in a Cl net influx of 226±31 μmol·hr−1·g−1 ww. Symmetrical substitution of Na+ by choline resulted in a substantial hyperpolarisation of the gill. Cl influx was unchanged under these conditions. However, net influx of Cl decreased by 40%, due to an increase of the Cl efflux.Nevertheless, a significant Cl net influx remained which was independent of the presence of Na+. When 2 mmol/l ouabain were added to the internal perfusion medium, PDte increased, although the fluxes remained unchanged. Following external application of 1μmol/l of the V-type H+-ATPase inhibitor bafilomycin, Al PDte and Cl effluxes were not significantly affected. However, Cl influxes decreased. These findings suggest that Cl can be taken up independently of Na+ and that active Na+ independent Cl uptake across the posterior gill of Eriocheir sinensis is probably driven by a V-type H+-ATPase localized in the apical membrane.  相似文献   

13.
Aquatic animals have a close relationship with water, but differences in their symbiotic bacteria and the bacterial composition in water remains unclear. Wild or domestic Chinese mitten crabs (Eriocheir sinensis) and the water in which they live were collected from four sampling sites in Jiangsu and Shanghai, China. Bacterial composition in water, gills or guts of E. sinensis, were compared by high-throughput sequencing using 16S rRNA genes. Analysis of >660,000 sequences indicated that bacterial diversity was higher in water than in gills or guts. Tenericutes and Proteobacteria were dominant phyla in guts, while Actinobacteria, Proteobacteria and Bacteroidetes were dominant in gills and water. Non-metric multidimensional scaling analysis indicated that microbiota from gills, guts or water clearly separated into three groups, suggesting that crabs harbor a more specific microbial community than the water in which they live. The dominant OTUs in crab gut were related to Mycoplasmataceae, which were low in abundance in gills, showing that, like mammals, crabs have body-site specific microbiota. OTUs related to Ilumatobacter and Albimonas, which are commonly present in sediment and seawater, were dominant in gills but almost absent from the sampled water. Considering E. sinensis are bottom-dwelling crustacean and they mate in saline water or seawater, behavior and life cycle of crabs may play an important role in shaping the symbiotic bacterial pattern. This study revealed the relationship between the symbiotic bacteria of Chinese mitten crab and their habitat, affording information on the assembly factors of commensal bacteria in aquatic animals.  相似文献   

14.
Isolated perfused gills of stenohaline crabs Cancer pagurus adapted to seawater, brackish water-adapted euryhaline shore crabs Carcinus maenas and freshwater-adapted extremely euryhaline Chinese crabs Eriocheir sinensis were tested for their capacity to excrete ammonia. Gills were perfused with haemolymph-like salines and bathed with salines equal in adaptation osmolality. Applying 100 μmol · l−1 NH4Cl in the perfusion saline and concentrations of NH4Cl in the bath that were stepwise increased from 0 to 4000 μmol · l−1 allowed us to measure transbranchial fluxes of ammonia along an outwardly as well as various inwardly directed gradients. The gills of all three crab species were capable – to different extents – of active excretion of ammonia against an inwardly directed gradient. Of the three crab species, the gills of Cancer pagurus revealed the highest capacity for active excretion of ammonia, being able to excrete it from the haemolymph (100 μmol · l−1 NH+ 4) through the gill epithelium against ambient concentrations of up to 800 μmol · l−1, i.e. against an eightfold gradient. Carcinus maenas and E. sinensis were able to actively excrete ammonia against approximately fourfold gradients. Within the three crab species, the gills of E. sinensis exhibited the greatest capacity to resist influx at very high external concentrations of up to 4000 μmol · l−1. We consider the observed capacities for excretion of ammonia against the gradient as ecologically meaningful. These benthic crustaceans protect themselves by burying themselves in the sediment, where, in contrast to the water column, concentrations of ammonia have previously been reported that greatly increase haemolymph levels. Electrophysiological results indicate that the permeabilities of the gill epithelia are a clue to understanding the species-specific differences in active excretion of ammonia. During the invasion of brackish water and freshwater, the permeabilities of the body surfaces greatly decreased. The gills of marine Cancer pagurus exibited the greatest permeability (ca. 250 mS cm−2), thus representing practically no influx barrier for ions including NH+ 4. We therefore assume that C. pagurus had to develop the strongest mechanism of active excretion of ammonia to counteract influx. On the other hand, freshwater-adapted E. sinensis exhibited the lowest ion permeability (ca. 4 mS cm−2) which may reduce passive NH+ 4 influxes at high ambient levels. Accepted: 14 October 1998  相似文献   

15.
Summary The rate of Cl influx in intactChara was inhibited whenever the ATP concentration was reduced by application of metabolic inhibitors. In perfused cells, however, a net influx of Cl against its electrochemical gradient could be observed in the absence of ATP. Addition of ATP to the perfusion medium slightly stimulated Cl influx in one experiment but had no effect in another. Addition of ADP, NADH or metabolic inhibitors did not alter the influx rate. Consideration of the potential energy gradients across theChara plasmalemma in the perfused state leads to the conclusion that Cl influx occurs by cotransport with H+ or OH.  相似文献   

16.
Chloride and water secretion and absorption by the gills of the eel   总被引:1,自引:0,他引:1  
Summary Perfusion experiments with the heart-gill preparation of the common eel, Anguilla vulgaris, are presented. Various concentrations of perfusion medium were used with eels from both sea water and fresh water. The external medium was sea water in the case of the sea water eels and fresh water in the other case.Perfusate was collected over a period of hours in each experiment and the exchange of chloride and water was studied.In the early experiments it was shown that normal permeability of the gills to these substances is small. The development of an extremely precise chloride method made it possible to evaluate the magnitudes of the exchanges in accurate quantitative terms.Experiments with fresh water as external medium showed that there is a small but perfectly significant change in chloride concentration in the perfusion medium as it passes through the gills so that it becomes more dilute. Reasons are adduced from which it is concluded that the dilution is due to the diffusion of water into the internal medium through the surface of the gills. This branchial water intake is calculated to be something like 40 cc. per kilogram of eel per day. This figure is in substantial agreement with Smith's measurements of the rate of urine formation in fresh water fishes.It was found that when the external medium is sea water, the chloride concentration of the internal medium decreases at a considerably faster rate than in the case where fresh water is present outside the gills. Experiments in which the external medium was analysed showed that chloride was being secreted into the concentrated sea water. It was found possible to measure volume changes in the external medium as well as the changes of chloride concentration in both mediums. These experiments demonstrated beyond doubt that a concentrated chloride solution is secreted by the gills in opposition to a large concentration gradient.Calculations made from several different bases showed that the measurements of volume and of chloride concentration consistently agree in yielding similar values for the volume and concentration of the chloride solution secreted by the gills of the sea water eel.It is shown that the magnitude of the concentration changes effected are related to the concentration of the internal medium used so that a small increase in the concentration of the perfusion medium results in a large increase in the amount of chloride concentration change occurring in the perfusion. Below a certain concentration of the internal medium the gills no longer give evidence of doing concentration work, and may even become permeable as evidenced by the internal medium increasing in concentration as it passes through the gills.Similarities between the activities of the gill of the sea water eel and of the normal mammalian kidney are pointed out. A rough calculation indicates that the work performed by the two organs is of the same order when computed in terms of grams of tissue involved.Experiments in which urea analyses were made showed that the gills of the eel are permeable to urea and that the amount of urea excreted through the gills as determined by direct measurement agrees quite well with Smith's figures for extfa-renal urea excretion.Possible objections to some of the conclusions are brought forth and their untenability demonstrated.Fellow of the National Research Council of America.  相似文献   

17.
Some kinetic properties of gill Na(+),K(+)-ATPase of the estuarine crab, Chasmagnathus granulata, and its involvement in osmotic adaptation were analyzed. Results suggest the presence of different Na(+),K(+)-ATPase isoforms in anterior and posterior gills. They have different affinities for Na(+), but similar affinity values for K(+), Mg(2+), ATP and similar enzymatic profiles as a function of temperature of the incubation medium. Ouabain concentrations which inhibit 50% of enzyme activity were also similar in the two types of gills. Enzyme activity and affinity for Na(+) are higher in posterior gills than in anterior ones. Furthermore, affinities of Na(+),K(+)-ATPase of posterior gills for Na(+) and K(+) were similar to or higher than those of gills or other structures involved in the osmoregulation in several euryaline decapod crustaceans. Acclimation to low salinity was related to a significant increase in the maximum Na(+), K(+)-ATPase activity, mainly in posterior gills. On the other hand, crab acclimation to high salinity induced a significant decrease in maximum enzyme activity, both in anterior and posterior gills. These results are in accordance to the osmoregulatory performance showed by C. granulata in diluted media, and point out the major role of posterior gills in the osmoregulation of this species.  相似文献   

18.
Ionic balance in the freshwater-adapted Chinese crab, Eriocheir sinensis   总被引:1,自引:0,他引:1  
Ionic regulation by the gills of the freshwater-adapted Chinese crab, Eriocheir sinensis, was examined. The balance of uptake and loss of NaCl in crabs living in freshwater was established. Urine production was measured directly by cannulating the nephropores. Daily urinary loss of Na+ is equivalent to 16% of the haemolymph Na+ content and is substantially higher than that based on data from indirect measurements reported in the literature. Weight and area of anterior and posterior gills are proportional to body weight. The role of the gills in compensating urinary loss by uptake was determined by analysing changes in Na+ and Cl- concentrations in the external medium in which isolated perfused gills were suspended. In posterior gills, salt loss is quantitatively balanced by NaCl net uptake from an external concentration of 1.3 mmol l(-1) NaCl upwards. The transport constant (Kt) for half maximum saturation of net uptake and saturation of NaCl uptake are 1.5 mmol l(-1) and 4 mmol l(-1), respectively. In contrast to previous studies in which tracer fluxes or transepithelial short-circuit currents were determined, our method of direct ion determination shows that no net uptake of Na+ or Cl- occurs in posterior gills in the absence of the respective counter ion, or when uptake of one ion is blocked by a specific inhibitor. Net uptake of Na+ and Cl- was about equal. We conclude that the uptake of the two ions is coupled. The properties of the branchial ion uptake of E. sinensis correlates with the distribution of this crab in river systems.  相似文献   

19.
This review will focus on cases where it might be possible that the toxicity of the heavy metal mercury results from an interaction with osmoregulatory mechanisms. It is shown that mercury-induced impairment of osmoregulatory capability in the sense of severe modifications of the blood osmotic concentration is more pronounced in brachyuran decapod species adapted to dilute waters. The rationale for considering these effects is based on a comparison between mercury effects on three species of decapod crustaceans exhibiting various degrees of osmoregulation capability: the strong regulator crab Eriocheir sinensis, the weak regulator Carcinus maenas, both of them being euryhaline, and the stenohaline osmoconformer Cancer pagurus. It is established that a synergistic effect exists between salinity and HgCl2 toxicity in euryhaline species which are hyperregulators in dilute media, that is, E. sinensis and C. maenas only. Depth study of E. sinensis as a model demonstrates that Na+ and Cl permeabilities of the gill epithelium is affected by mercury, as well as the Na+ and Cl active transport processes located at the same level. Evidences are brought showing that mercury drastically disturbs the Na+/K+ pump and the Cl channels located in the serosal baso-lateral membranes of the posterior gills.  相似文献   

20.
Summary Isolated heads of trout (Salmo gairdneri) were used to study the unidirectional flux of sodium and chloride across the gills in salt water.Two perfusion techniques were employed. Under constant pressure perfusion, the addition of adrenaline during the perfusion causes an increase in the flow-rate. Under constant flow-rate conditions, adrenaline provokes a decrease in pressure. A comparison of influx determination made with these two techniques of perfusion shows that variations in flow-rate of perfusion do not affect the assessment of these fluxes.A net efflux of sodium, but not of chloride, is demonstrated in sea water. The effluxes of sodium and chloride observed in sea water are decreasedd about 50% during a rapid transfer to fresh water. The addition of potassium to this medium stimulates the effluxes of sodium and chloride, suggesting a Na/K exchange participating in the chloride excretion.Adrenaline causes an inhibition of sodium and chloride efflux in sea water which persists after transfer to fresh water and the addition of potassium. Only the influx of chloride is inhibited at a concentration of 10–5 M whereas the sodium influx is unaffected. The presence of adrenaline results in a net influx of both sodium and chloride.The differential action of adrenaline on the influxes of sodium and chloride suggests that the hemodynamic modifications provoked by this catecholamine occur independently of its aforementioned ion exchange effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号