首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Light-mediated activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) in intact spinach chloroplasts (Spinacia oleracea L.) is enhanced in the presence of 10−5 molar external free Ca2+. The most pronounced effect is observed during the first minutes of illumination. Ruthenium red, an inhibitor of light-induced Ca2+ influx, inhibits this Ca2+ stimulated activation. In isolated stromal preparations, the activation of fructose-1,6-bisphosphatase is already enhanced by 2 minutes of exposure to elevated Ca2+ concentrations in the presence of physiological concentrations of Mg2+ and fructose-1,6-bisphosphate. Maximal activation of the enzyme is achieved between 0.34 and 0.51 millimolar Ca2+. The Ca2+ mediated activation decreases with increasing fructose-1,6-bisphosphate concentration and with increasing pH. The data are consistent with the proposal that the illumination of chloroplasts leads to a transient increase of free stromal Ca2+. In dark-kept chloroplasts the steady-state concentration of free stromal Ca2+ is 2.4 to 6.3 micromolar as determined by null point titration. These observations support our previous proposal that light-induced Ca2+ influx into chloroplasts does not only influence the cytosolic concentration of free Ca2+ but also regulates enzymatic processes inside the chloroplast.  相似文献   

2.
Cytosolic ATP-phosphofructokinase (PFK) from spinach leaves (Spinacia oleracea L.) was inhibited by submillimolar concentrations of free Mg2+. The free Mg2+ concentration required for 50% inhibition of PFK activity was 0.22 millimolar. Inhibition by free Mg2+ was independent of the MgATP2− concentration. Inorganic phosphate (Pi) reduces the inhibition of PFK activity by Mg2+. Free ATP (ATP4−) also inhibits PFK activity. For free ATP the inhibition of PFK activity was dependent on the MgATP2− concentration. Fifty percent inhibition of PFK activity requires 1.2 and 3.7 millimolar free ATP at 0.1 and 0.5 millimolar MgATP2−, respectively. It was proposed that free ATP competes for the MgATP2− binding site, whereas free Mg2+ does not. Pi diminished the inhibitory effect of free ATP on PFK activity. Free ATP and Pi had substantial effects on the MgATP2− requirement of cytosolic PFK. For half-maximum saturation of PFK activity 3 and 76 micromolar MgATP2− was required at 0.007 and 0.8 millimolar free ATP in the absence of Pi. At 5 and 25 millimolar Pi, half-maximum saturation was achieved at 9 and 14 micromolar MgATP2−. PFK activity was inhibited by Ca2+. The inhibition by Ca2+ depends upon the total Mg2+ concentration. Fifty percent inhibition of PFK activity required 22 and 32 micromolar Ca2+ at 0.1 and 0.2 millimolar Mg2+, respectively. At physiological concentrations of about 0.5 millimolar free Mg2+, Ca2+ would have little effect on cytosolic PFK activity from spinach leaves. PFK is not absolutely specific for the nucleoside 5′-triphosphate substrate. Besides MgATP2−, MgUTP2−, MgCTP2−, and MgGTP2− could be used as a substrate. All four free nucleotides inhibit PFK activity. The physiological consequences of the regulatory properties of cytosolic PFK from spinach leaves will be discussed. A model will be introduced, in an attempt to describe the complex interaction of PFK with substrates and the effectors Mg2+ and Pi.  相似文献   

3.
Light adaptation in insect photoreceptors is caused by an increase in the cytosolic Ca2+ concentration. To better understand this process, we measured the cytosolic Ca2+ concentration in vivo as a function of adapting light intensity in the white-eyed blowfly mutant chalky. We developed a technique to measure the cytosolic Ca2+ concentration under conditions as natural as possible. The calcium indicator dyes Oregon Green 1, 2, or 5N (Molecular Probes, Inc., Eugene, OR) were iontophoretically injected via an intracellular electrode into a photoreceptor cell in the intact eye; the same electrode was also used to measure the membrane potential. The blue-induced green fluorescence of these dyes could be monitored by making use of the optics of the facet lens and the rhabdomere waveguide. The use of the different Ca2+-sensitive dyes that possess different affinities for Ca2+ allowed the quantitative determination of the cytosolic Ca2+ concentration in the steady state. Determining the cytosolic Ca2+ concentration as a function of the adapting light intensity shows that the Ca2+ concentration is regulated in a graded fashion over the whole dynamic range where a photoreceptor cell can respond to light. When a photoreceptor is adapted to bright light, the cytosolic Ca2+ concentration reaches stable values higher than 10 μM. The data are consistent with the hypothesis that the logarithm of the increase in cytosolic Ca2+ concentration is linear with the logarithm of the light intensity. From the estimated values of the cytosolic Ca2+ concentration, we conclude that the Ca2+-buffering capacity is limited. The percentage of the Ca2+ influx that is buffered gradually decreases with increasing Ca2+ concentrations; at cytosolic Ca2+ concentration levels above 10 μM, buffering becomes minimal.  相似文献   

4.
《Biophysical journal》2021,120(18):3960-3972
Calcium (Ca2+) is a universal second messenger that participates in the regulation of innumerous physiological processes. The way in which local elevations of the cytosolic Ca2+ concentration spread in space and time is key for the versatility of the signals. Ca2+ diffusion in the cytosol is hindered by its interaction with proteins that act as buffers. Depending on the concentrations and the kinetics of the interactions, there is a large range of values at which Ca2+ diffusion can proceed. Having reliable estimates of this range, particularly of its highest end, which corresponds to the ions free diffusion, is key to understand how the signals propagate. In this work, we present the first experimental results with which the Ca2+-free diffusion coefficient is directly quantified in the cytosol of living cells. By means of fluorescence correlation spectroscopy experiments performed in Xenopus laevis oocytes and in cells of Saccharomyces cerevisiae, we show that the ions can freely diffuse in the cytosol at a higher rate than previously thought.  相似文献   

5.
Abstract: Muscarinic receptor stimulation elicits a redistribution of calmodulin (CaM) from the membrane fraction to cytosol in the human neuroblastoma cell line SK-N-SH. Increasing the intracellular Ca2+ concentration with ionomycin also elevates cytosolic CaM. The aim of this study was to investigate the roles of extracellular and intracellular Ca2+ pools in the muscarinic receptor-mediated increases in cytosolic CaM in SK-N-SH cells. Stimulus-mediated changes in intracellular Ca2+ were monitored in fura-2-loaded cells, and CaM was measured by radioimmunoassay in the 100,000-g cytosol and membrane fractions. The influx of extracellular Ca2+ normally seen with carbachol treatment in SK-N-SH cells was eliminated by pretreatment with the nonspecific Ca2+ channel blocker Ni2+. Blocking the influx of extracellular Ca2+ had no effect on carbachol-mediated increases in cytosolic CaM (168 ± 18% of control values for carbachol treatment alone vs. 163 ± 28% for Ni2+ and carbachol) or decreases in membrane CaM. Similarly, removal of extracellular Ca2+ from the medium did not affect carbachol-mediated increases in cytosolic CaM (168 ± 26% of control). On the other hand, prevention of the carbachol-mediated increase of intracellular free Ca2+ by pretreatment with the cell-permeant Ca2+ chelator BAPTA/AM did attenuate the carbachol-mediated increase in cytosolic CaM (221 ± 37% of control without BAPTA/AM vs. 136 ± 13% with BAPTA/AM). The effect of direct entry of extracellular Ca2+ into the cell by K+ depolarization was assessed. Incubation of SK-N-SH cells with 60 mM K+ elicited an immediate and persistent increase in intracellular free Ca2+ concentration, but there was no corresponding alteration in CaM localization. On the contrary, in cells where intracellular Ca2+ was directly elevated by thapsigargin treatment, cytosolic CaM was elevated for at least 30 min while particulate CaM was decreased. In addition, treatment with ionomycin in the absence of extracellular Ca2+, which releases Ca2+ from intracellular stores, induced an increase in cytosolic CaM (203 ± 30% of control). The mechanism for the CaM release may involve activation of the α isozyme of protein kinase C, which was translocated from cytosol to membranes much more profoundly by thapsigargin than by K+ depolarization. These data demonstrate that release of Ca2+ from the intracellular store is important for the carbachol-mediated redistribution of CaM in human neuroblastoma SK-N-SH cells.  相似文献   

6.
The effect of euplotin C—a cytotoxic secondary metabolite produced by the protist ciliate Euplotes crassus—on the voltage-dependent Ca2+ channel activity was studied in a single-celled system by analyzing the swimming behavior of Paramecium. When the intraciliary Ca2+ concentration associated with plasma membrane depolarization increases, a reversal in the direction of ciliary beating occurs, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca2+ influx. The present study demonstrates that the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, is longer in euplotin C-treated cells. Using selective Ca2+ channel blockers, we demonstrate that euplotin C modulates Ca2+ channels similar to the T- and L-types that occur in mammalian cells. Indeed, the increase of CCR duration significantly decreased when flunarizine and nimodipine-verapamil blockers were employed. Membrane fluidity measurements using a fluorescent dye, 6-lauroyl-2-dimethylaminonaphtalene (laurdan), indicated that membranes in euplotin C-treated cells are more tightly packed and ordered than membranes in control cells. Our data suggest that euplotin C enhances backward swimming in our unicellular model system by interacting with the ciliary Ca2+ channel functions through the reduction of cell membrane fluidity.  相似文献   

7.
We measured the fluorescence static anisotropy and the time-resolved fluorescence anisotropy decay of F-actin labelled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine at 20°C in solutions containing 100 mM KCl and free Ca2+ at various concentrations. The average fluorescence anisotropy and the fluorescence rotational correlation time of actin decreased in the presence of micromolar concentrations of free Ca2+. The change of the rotational correlation time of labelled actin could not be explained by a variation of the actin critical concentration. We concluded therefore that F-actin undergoes a conformational change induced by Ca2+ binding. The binding constant was 6 × 106 M?1.  相似文献   

8.
The effect of calmodulin on the activity of the plasma membrane Ca-ATPase was investigated on plasma membranes purified from radish (Raphanus sativus L.) seedlings. Calmodulin stimulated the hydrolytic activity and the transport activity of the plasma membrane Ca-ATPase to comparable extents in a manner dependent on the free Ca2+ concentration. Stimulation was marked at low, nonsaturating Ca2+ concentrations and decreased increasing Ca2+, so that the effect of calmodulin resulted in an increase of the apparent affinity of the enzyme for free Ca2+. The pattern of calmodulin stimulation of the plasma membrane Ca-ATPase activity was substantially the same at pH 6.9 and 7.5, in the presence of ATP or ITP, and when calmodulin from radish seeds was used rather than that from bovine brain. At pH 6.9 in the presence of 5 micromolar free Ca2+, stimulation of the plasma membrane Ca-ATPase was saturated by 30 to 50 micrograms per milliliter bovine brain calmodulin. The calmodulin antagonist calmidazolium inhibited both basal and calmodulin-stimulated plasma membrane Ca-ATPase activity to comparable extents.  相似文献   

9.
The cellular mechanisms that regulate potassium (K+) channels in guard cells have been the subject of recent research, as K+ channel modulation has been suggested to contribute to stomatal movements. Patch clamp studies have been pursued on guard cell protoplasts of Vicia faba to analyze the effects of physiological cytosolic free Ca2+ concentrations, Ca2+ buffers and GTP-binding protein modulators on inward-rectifying K+ channels. Ca2+ inhibition of inward-rectifying K+ currents depended strongly on the concentration and effectiveness of the Ca2+ buffer used, indicating a large Ca2+ buffering capacity and pH increases in guard calls. When the cytosolic Ca2+ concentration was buffered to micromolar levels using BAPTA, inward-rectifying K+ channels were strongly inhibited. However, when EGTA was used as the Ca2+ buffer, much less inhibition was observed, even when pipette solutions contained 1 µM free Ca2+. Under the imposed conditions, GTPγS did not significantly inhibit inward-rectifying K+ channel currents when cytosolic Ca2+ was buffered to low levels or when using EGTA as the Ca2+ buffer. Furthermore, GDPβS reduced inward K+ currents at low cytosolic Ca2+, indicating a novel mode of inward K+ channel regulation by G-protein modulators, which is opposite in effect to that from previous reports. On the other hand, when Ca2+ was effectively elevated in the cytosol to 1 µM using BAPTA, GTPγS produced an additional inhibition of the inward-rectifying K+ channel currents in a population of cells, indicating possible Ca2+-dependent action of GTP-binding protein modulators in K+ channel inhibition. Assays of stomatal opening show that 90% inhibition of inward K+ currents does not prohibit, but slows, stomatal opening and reduces stomatal apertures by only 34% after 2 h light exposure. These data suggest that limited K+ channel down-regulation alone may not be rate-limiting, and it is proposed that the concerted action of proton-pump inhibition and additional anion channel activation is likely required for inhibition of stomatal opening. Furthermore, G-protein modulators regulate inward K+ channels in a more complex and limited, possibly Ca2+-dependent, manner than previously proposed.  相似文献   

10.
The contraction-relaxation cycle of the heart represents the combined action of a variety of different components of the myocytes. For many years an ‘index’ of contractility has been sought as a means of describing and integrating the large amount of information available from the studies of heart muscle contraction. This review will undertake to show that dF/dt, recorded from the whole heart, and dT/dt, recorded in isometric studies of isolated heart muscle preparations, should not be considered as the ‘index’ of contractility. Examples will be presented in which an increasing dT/dt is paradoxically accompanied by a lower tension, while a decreasing dT/dt can occur concomitantly with an increased contractile tension. Arguments are further presented in support of the concept that Ca2+, in conjunction with troponin C, is the main determinant of cardiac contractility and that dT/dt reflects a dynamic equilibrium between free and troponin-bound Ca2+. Peak tension is thus the net result of overlapping events competing for Ca2+ during the latter part of contraction, that is, during Phase II of contraction as defined below. These suggestions are based upon the following considerations: (a) The Ca2+ pumps are active even during rest and serve to maintain low cytosolic Ca2+ levels, (b) As cytosolic Ca2+ concentration increases, Ca2+ pump activity also increases, (c) In addition, the Na+Ca2+ exchange is activated by elevated Ca2+ concentrations and serves to decrease cytosolic Ca2+ levels, (d) The net result is a decline in free Ca2+ concentration during Phase II and a reduction in the rate of cross-bridge formation until peak tension is reached. Thus, the Ca2+ handling elements of the myocyte serve as a finely tuned feedback device, regulating troponin C-Ca2+ interactions controlling the Ca2+ concentration of the cytosol and as a result, the actin and myosin interaction. Factors which influence the function of these elements will change the contractility of the heart.  相似文献   

11.
The regulation of cytosolic Ca2+ has been investigated in growing root-hair cells of Sinapis alba L. with special emphasis on the role of the plasmamembrane Ca2+-ATPase. For this purpose, erythrosin B was used to inhibit the Ca2+-ATPase, and the Ca2+ ionophore A23187 was applied to manipulate cytosolic free [Ca2+] which was then measured with Ca2+-selective microelectrodes. (i) At 0.01 M, A23187 had no effect on the membrane potential but enhanced the Ca2+ permeability of the plasma membrane. Higher concentrations of this ionophore strongly depolarized the cells, also in the presence of cyanide. (ii) Unexpectedly, A23187 first caused a decrease in cytosolic Ca2+ by 0.2 to 0.3 pCa units and a cytosolic acidification by about 0.5 pH units, (iii) The depletion of cytosolic free Ca2+ spontaneously reversed and became an increase, a process which strongly depended on the external Ca2+ concentration, (iv) Upon removal of A23187, the cytosolic free [Ca2+] returned to its steady-state level, a process which was inhibited by erythrosin B. We suggest that the first reaction to the intruding Ca2+ is an activation of Ca2+ transporters (e.g. ATPases at the endoplasmic reticulum and the plasma membrane) which rapidly remove Ca2+ from the cytosol. The two observations that after the addition of A23187, (i) Ca2+ gradients as steep as-600 mV could be maintained and (ii) the cytosolic pH rapidly and immediately decreased without recovery indicate that the Ca2+-exporting plasma-membrane ATPase is physiologically connected to the electrochemical pH gradient, and probably works as an nH+/Ca2+-ATPase. Based on the finding that the Ca2+-ATPase inhibitor erythrosin B had no effect on cytosolic Ca2+, but caused a strong Ca2+ increase after the addion of A23187 we conclude that these cells, at least in the short term, have enough metabolic energy to balance the loss in transport activity caused by inhibition of the primary Ca2+-pump. We further conclude that this ATPase is a major Ca2+ regulator in stress situations where the cytosolic Ca2+ has been shifted from its steady-state level, as may be the case during processes of signal transduction.Abbreviations and Symbols EB erythrosin B - Em membrane potential - pCa negative logarithm of the Ca2+ concentration This work was supported by the Deutche Forschungsgemeinschaft (H.F.) and the Alexander-von-Humboldt-Foundation (A.T.).  相似文献   

12.
Tryptophan 5-monooxygenase in rat brainstem cytosol was activated about twofold by incubation with 0.5 mm ATP and 5 mm MgCl2. The activation required micromolar concentrations of Ca2+ but was not dependent on either cyclic AMP or cyclic GMP. Rat brain cytosol was shown to possess an endogenous protein kinase which was markedly stimulated by the addition of Ca2+ using endogenous protein substrates. Following activation by ATP and Mg2+ in the presence of Ca2+, tryptophan 5-monooxygenase was reversibly deactivated to the original level by incubation at 30 °C after removal of Ca2+ by adding ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid and was then reactivated by incubation at 30 °C after subsequent addition of Ca2+ and ATP. The deactivation was markedly inhibited by the omission of Mg2+ or by the addition of NaF.  相似文献   

13.
Calcium-activated proteolytic activity in rat liver mitochondria   总被引:1,自引:0,他引:1  
Soluble extracts from sonicated rat liver mitochondria and rat liver cytosol were each chromatographed on DEAE-cellulose columns, and the fractions assayed for Ca2+-activated proteolytic activity using 14C-casein as a substrate. The mitochondrial preparations were shown to be free of cytosolic and microsomal contamination by the lack of alcohol dehydrogenase activity, a cytosolic marker enzyme, and by a lack of cytochrome P-450 activity, a microsomal marker enzyme. Two peaks of Ca2+-activated neutral endoprotease activity were resolved from the mitochondrial fractions. One protease was half-maximally activated with 25 μM Ca2+, and the other by 750 μM Ca2+. Rat liver cytosol contained only a high Ca2+-requiring protease peak. This is the first demonstration of Ca2+-activated proteases in mitochondria.  相似文献   

14.
Hydrolysis of 3-methylumbelliferyl glucuronide by liver microsomal β-glucuronidase is enhanced about 2-fold by micromolar concentrations of Ca2+; half-maximal stimulation occurs with 0.35 μM Ca2+. Dissociation of the enzyme from microsomal membranes by various treatments increases basal β-glucuronidase activity and markedly decreases the sensitivity of the enzyme to Ca2+. Under similar conditions, the soluble lysosomal form of the enzyme is insensitive to Ca2+. Ca2+ stimulation was unaltered by addition of calmodulin inhibitors or exogenous calmodulin. Thus, interaction of cytosolic Ca2+ with membrane bound β-glucuronidase may modulate glucuronidation in intact hepatocytes via a novel, calmodulin-independent mechanism.  相似文献   

15.
Chemoattractant priming and activation of PMNs results in changes in cytosolic Ca2+ concentration, tyrosine kinase activity, and gene expression. We hypothesize that the initial signaling for the activation of a 105 kDa protein (Rel-1) requires Ca2+-dependent tyrosine phosphorylation. A rapid and time-dependent tyrosine phosphorylation of Rel-1 occurred following formyl-Met-Leu-Phe (fMLP) stimulation of human PMNs at concentrations that primed or activated the NADPH oxidase (10−9 to 10−6 M), becoming maximal after 30 s. Pretreatment with pertussis toxin (Ptx) or tyrosine kinase inhibitors abrogated this phosphorylation and inhibited fMLP activation of the oxidase. The fMLP concentrations employed also caused a rapid increase in cytosolic Ca2+ but chelation negated the effects, including the cytosolic Ca2+ flux, oxidase activation, and the tyrosine phosphorylation of Rel-1. Conversely, chelation of extracellular Ca2+ decreased the fMLP-mediated Ca2+ flux, had no affect on the oxidase, and augmented tyrosine phosphorylation of Rel-1. Phosphorylation of Rel-1 was inhibited when PMNs were preincubated with a p38 MAP kinase (MAPK) inhibitor (SB203580). In addition, fMLP elicited rapid activation of p38 MAPK which was abrogated by chelation of cytosolic Ca2+. Thus, fMLP concentrations that prime or activate the oxidase cause a rapid Ca2+-dependent tyrosine phosphorylation of Rel-1 involving p38 MAPK activation.  相似文献   

16.
The importance of Ca2+ signaling in astrocytes is undisputed but a potential role of Ca2+ influx via L-channels in the brain in vivo is disputed, although expression of these channels in cultured astrocytes is recognized. This study shows that an increase in free cytosolic Ca2+ concentration ([Ca2+]i) in astrocytes in primary cultures in response to an increased extracellular K+ concentration (45 mM) is inhibited not only by nifedipine (confirming previous observations) but also to a very large extent by ryanodine, inhibiting ryanodine receptor-mediated release of Ca2+, known to occur in response to an elevation in [Ca2+]i. This means that the actual influx of Ca2+ is modest, which may contribute to the difficulty in demonstrating L-channel-mediated Ca2+ currents in astrocytes in intact brain tissue. Chronic treatment with any of the 3 conventional anti-bipolar drugs lithium, carbamazepine or valproic acid similarly causes a pronounced inhibition of K+-mediated increase in [Ca2+]i. This is shown to be due to an inhibition of capacitative Ca2+ influx, reflected by decreased mRNA and protein expression of the ‘transient receptor potential channel’ (TRPC1), a constituent of store-operated channels (SOCEs). Literature data are cited (i) showing that depolarization-mediated Ca2+ influx in response to an elevated extracellular K+ concentration is important for generation of Ca2+ oscillations and for the stimulatory effect of elevated K+ concentrations in intact, non-cultured brain tissue, and (ii) that Ca2+ channel activity is dependent upon availability of metabolic substrates, including glycogen. Finally, expression of mRNA for Cav1.3 is demonstrated in freshly separated astrocytes from normal brain.  相似文献   

17.
Intracellular Ca2+ release is a versatile second messenger system. It is modeled here by reaction-diffusion equations for the free Ca2+ and Ca2+ buffers, with spatially discrete clusters of stochastic IP3 receptor channels (IP3Rs) controlling the release of Ca2+ from the endoplasmic reticulum. IP3Rs are activated by a small rise of the cytosolic Ca2+ concentration and inhibited by large concentrations. Buffering of cytosolic Ca2+ shapes global Ca2+ transients. Here we use a model to investigate the effect of buffers with slow and fast reaction rates on single release spikes. We find that, depending on their diffusion coefficient, fast buffers can either decouple clusters or delay inhibition. Slow buffers have little effect on Ca2+ release, but affect the time course of the signals from the fluorescent Ca2+ indicator mainly by competing for Ca2+. At low [IP3], fast buffers suppress fluorescence signals, slow buffers increase the contrast between bulk signals and signals at open clusters, and large concentrations of buffers, either fast or slow, decouple clusters.  相似文献   

18.
Polyamine uptake in carrot cell cultures   总被引:7,自引:4,他引:3       下载免费PDF全文
Putrescine and spermidine uptake into carrot (Daucus carota L.) cells in culture was studied. The time course of uptake showed that the two polyamines were very quickly transported into the cells, reaching a maximum absorption within 1 minute. Increasing external polyamine concentrations up to 100 millimolar showed the existence of a biphasic system with different affinities at low and high polyamine concentrations. The cellular localization of absorbed polyamines was such that a greater amount of putrescine was present in the cytoplasmic soluble fraction, while spermidine was mostly present in cell walls. The absorbed polyamines were released into the medium in the presence of increasing external concentrations of the corresponding polyamine or Ca2+. The effects of Ca2+ were different for putrescine and spermidine; putrescine uptake was slightly stimulated by 10 micromolar Ca2+ and inhibited by higher concentrations, while for spermidine uptake there was an increasing stimulation in the Ca2+ concentration range between 10 micromolar and 1 millimolar. La3+ nullified the stimulatory effect of 10 micromolar Ca2+ on putrescine uptake and that of 1 millimolar Ca2+ on spermidine uptake. La3+ at 0.5 to 1 millimolar markedly inhibited the uptake of both polyamines, suggesting that it interferes with the sites of polyamine uptake. Putrescine uptake was affected to a lesser extent by metabolic inhibitors than was spermidine uptake. It is proposed that the entry of polyamines into the cells is driven by the transmembrane electrical gradient, with a possible antiport mechanism between external and internal polyamine molecule.  相似文献   

19.
Cytosolic fructose-1,6-bisphosphatase from spinach (Spinacia oleracea L.) leaves was purified over 1700-fold. The final preparation was specific for fructose-1,6-bisphosphate in the presence of either Mg2+ or Mn2+, and was free of interfering enzyme activities. Ca2+ was an effector of fructose-1,6-bisphosphatase activity, and showed different kinetics, depending on whether Mg2+ or Mn2+ was used as cofactor. In the presence of 5 millimolar Mg2+, Ca2+ appeared as activator or as inhibitor of the enzyme at low or high levels of substrate, respectively. In both cases, a rise in affinity for fructose-1,6-bisphosphate was observed. A model is proposed to describe the complex interaction of fructose-1,6-bisphosphatase with its substrate and Ca2+. However, with Mn2+ (60 micromolar) as cofactor, Ca2+ exhibited the Michaelis-Menten kinetics of a noncompetitive inhibitor. When assayed at constant substrate concentration, Ca2+ behaves as a competitive or noncompetitive inhibitor, depending on the use of Mg2+ or Mn2+ as cofactor, respectively, with a positive cooperativity in both cases. Fructose-2,6-bisphosphate showed a classic competitive allosteric inhibition in the presence of Mg2+ as cofactor, but this effect was low with Mn2+. From these results we suggest that Ca2+ plays a role in the in vivo regulation of cytosolic fructose-1,6-bisphosphatase.  相似文献   

20.
The involvement of Ca2+ in the response to high Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+ was investigated in Saccharomyces cerevisiae. The yeast cells responded through a sharp increase in cytosolic Ca2+ when exposed to Cd2+, and to a lesser extent to Cu2+, but not to Mn2+, Co2+, Ni2+, Zn2+, or Hg2+. The response to high Cd2+ depended mainly on external Ca2+ (transported through the Cch1p/Mid1p channel) but also on vacuolar Ca2+ (released into the cytosol through the Yvc1p channel). The adaptation to high Cd2+ was influenced by perturbations in Ca2+ homeostasis. Thus, the tolerance to Cd2+ often correlated with sharp Cd2+-induced cytosolic Ca2+ pulses, while the Cd2+ sensitivity was accompanied by the incapacity to rapidly restore the low cytosolic Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号