首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human placental villus tissue contains opioid receptors and peptides. Kappa opioid receptors (the only type present in this tissue) were purified with retention of their binding properties. The purified kappa receptor is a glycoprotein with an apparent molecular weight of 63,000. Two opioid receptor mediated functions were identified in trophoblast tissue, namely regulation of acetylcholine and hormonal (human chorionic gonadotrophin and human placental lactogen) release. Placental content of kappa receptors increases with gestational age. Term placental content of kappa receptors correlates with route of delivery (higher in those abdominally obtained). Opioid use and/or abuse during pregnancy affects placental receptor content at delivery, as well as its mediated functions. Opioid peptides identified in placental extracts were beta-endorphin, methionine enkephalin, leucine enkephalin and dynorphins 1-8 and 1-13. Dynorphin 1-8 seem to be the predominant opioid peptide present in placental villus tissue.  相似文献   

3.
Evidence for coupling of the kappa opioid receptor to brain GTPase   总被引:2,自引:0,他引:2  
In membranes from guinea pig cerebellum, a tissue which predominantly contains kappa opioid receptors, exogenous and endogenous kappa-selective opioid agonists stimulated low-km GTPase activity by 11-20% with concentrations for half-maximal stimulation of 3-23 microM. Opioid ligands of the mu and delta type had no effect on GTPase in these membranes. Similar stimulation of GTPase by kappa opiates was obtained in rat and monkey brain membranes pretreated with beta-funaltrexamine (beta-FNA) and cis-(+/-)-3-methylfentanyl isothiocyanate (superfit) to alkylate the mu and delta receptors, respectively. The stimulation of brain GTPase by kappa opiates in both types of membranes was inhibited by naloxone with IC50's of 0.35 microM and 0.40 microM. The results demonstrate the coupling of the kappa opioid receptor to high affinity GTPase, the Ni regulatory protein of the adenylate cyclase complex.  相似文献   

4.
A series of carbamate analogues were synthesized from levorphanol (1a), cyclorphan (2a) or butorphan (3a) and evaluated in vitro for their binding affinity at mu, delta, and kappa opioid receptors. Functional activities of these compounds were measured in the [(35)S]GTPgammaS binding assay. Phenyl carbamate derivatives 2d and 3d showed the highest binding affinity for kappa receptor (K(i)=0.046 and 0.051 nM) and for mu receptor (K(i)=0.11 and 0.12 nM). Compound 1c showed the highest mu selectivity. The preliminary assay for agonist and antagonist properties of these ligands in stimulating [(35)S]GTPgammaS binding mediated by the kappa opioid receptor illustrated that all of these ligands were kappa agonists. At the mu receptor, compounds 1b, 1c, 2b, and 3b were agonists, while compounds 2c-e and 3c-e were mu agonists/antagonists.  相似文献   

5.
Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse.  相似文献   

6.
Opioid receptors belong to the family of G-protein-coupled receptors characterized by their seven transmembrane domains. The activation of these receptors by agonists such as morphine and endogenous opioid peptides leads to the activation of inhibitory G-proteins followed by a decrease in the levels of intracellular cAMP. Opioid receptor activation is also associated with the opening of K(+) channels and the inhibition of Ca(2+) channels. A number of investigations, prior to the development of opioid receptor cDNAs, suggested that opioid receptor types interacted with each other. Early pharmacological studies provided evidence for the probable interaction between opioid receptors. More recent studies using receptor selective antagonists, antisense oligonucleotides, or animals lacking opioid receptors further suggested that interactions between opioid receptor types could modulate their activity. We examined opioid receptor interactions using biochemical, biophysical, and pharmacological techniques. We used differential epitope tagging and selective immunoisolation of receptor complexes to demonstrate homotypic and heterotypic interactions between opioid receptor types. We also used the proximity-based bioluminescence resonance energy transfer assay to explore opioid receptor-receptor interactions in living cells. In this article we describe the biochemical and biophysical methods involved in the detection of receptor dimers. We also address some of the concerns and suggest precautions to be taken in studies examining receptor-receptor interactions.  相似文献   

7.
The profile of opioid activity of E-2078, a synthetic stable dynorphin analog, was examined in the mouse vas deferens bioassay and compared to that of methionine enkephalin and nonpeptide kappa agonists in the absence and in the presence of selective antagonists for the mu-, kappa- and delta-opioid receptor subtypes. The inhibitory action of E-2078 and related kappa agonists was specifically and potently antagonized only by norbinaltorphimine, revealing the presence of kappa receptors in this tissue and the predominant kappa activity of E-2078.  相似文献   

8.
Following up on the observation that the dynorphin analog [Pro(3)]Dyn A(1-11)-NH(2) 2 possesses high affinity and selectivity for the kappa opioid receptor, a number of related peptides were prepared and characterized by radioligand binding and [(35)S]GTPgammaS assays. While incorporation of 2-azetidine carboxylic acid in position 3 led to the equally potent analog 3, the corresponding analog containing piperidine-2-carboxylic acid showed a nearly 90-fold reduction in kappa affinity. Differential preferred bond angles phi in the three building blocks might account for these observations. Compounds 2 and 3 were kappa antagonists with IC(50) values of 380 and 350 nM, respectively. The Sar(3) analog 7 and the Sar(2) analog 8 were kappa agonists, with greater selectivity than Dyn A(1-11)-NH(2) 1. In view of their high kappa affinities (8: K(i) = 1.5 nM; 2: K(i) = 2.4 nM), the new analogs were surprisingly weak kappa agonists or antagonists, e.g., the EC(50) value for the agonist 8 was 280 nM. Different kappa receptor subtypes in binding vs functional assays can not account for these results, since both assays were performed using the same membrane preparation.  相似文献   

9.
Endocrine actions of opioids   总被引:2,自引:0,他引:2  
The widespread occurrence of opioid peptides and their receptors in brain and periphery correlates with a variety of actions elicited by opioid agonists and antagonists on hormone secretion. Opioid actions on pituitary and pancreatic peptides are summarized in Table 1. In rats opioids stimulate ACTH and corticosterone secretion while an inhibition of ACTH and cortisol levels was observed in man. In both species, naloxone, an opiate antagonist, stimulates the release of ACTH suggesting a tonic suppression by endogenous opioids. In rats, a different stimulatory pathway must be assumed through which opiates can stimulate secretion of ACTH. Both types of action are probably mediated within the hypothalamus. LH is decreased by opioid agonists in many adult species while opiate antagonists elicit stimulatory effects, both apparently by modulating LHRH release. A tonic, and in females, a cyclic opioid control appears to participate in the regulation of gonadotropin secretion. Exogenous opiates potently stimulate PRL and GH secretion in many species. Opiate antagonists did not affect PRL or GH levels indicating absence of opioid control under basal conditions, while a decrease of both hormones by antagonists was seen after stimulation in particular situations. In rats, opiate antagonists decreased basal and stress-induced secretion of PRL. Data regarding TSH are quite contradictory. Both inhibitory and stimulatory effects have been described. Oxytocin and vasopressin release were inhibited by opioids at the posterior pituitary level. There is good evidence for an opioid inhibition of suckling-induced oxytocin release. Opioids also seem to play a role in the regulation of vasopressin under some conditions of water balance. The pancreatic hormones insulin and glucagon are elevated by opioids apparently by an action at the islet cells. Somatostatin, on the contrary, was inhibited. An effect of naloxone on pancreatic hormone release was observed after meals which contain opiate active substance. Whether opioids play a physiologic role in glucose homeostasis remains to be elucidated.  相似文献   

10.
A novel series of kappa (kappa) opioid receptor agonists were synthesized by incorporating the key structural features of known kappa opioid agonists while replacing the aryl acetamide portion with substituted amino acid conjugates. Compounds 3j (Ki = 6.7 nM), 3k (Ki = 3.6 nM), 3l (Ki = 4.6 nM), 3m (Ki = 0.83 nM) and 3o (Ki = 2 nM) possessed potent affinities for the kappa opioid receptor in vitro with reasonable selectivity over other opioid receptors.  相似文献   

11.
Opioid agonists specific for the , , and opioid receptor subtypes were tested for their ability to modulate potassium-evoked release of L-glutamate and dynorphin B-like immunoreactivity from guinea pig hippocampal mossy fiber synaptosomes. The opioid agonists U-62,066E and (–) ethylketocyclazocine, but not the agonist [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAGO) nor the agonist [D-Pen2,5]enkephalin (DPDE), inhibited the potassium-evoked release of L-glutamate and dynorphin B-like immunoreactivity. U-62,066E, but not DAGO or DPDE, also inhibited the potassium-evoked rise in mossy fiber synaptosomal cytosolic Ca2+ levels, indicating a possible mechanism for agonist inhibition of transmitter release. DAGO and DPDE were found to be without any effect on cytosolic Ca2+ levels or transmitter release in this preparation. The U-62,066E inhibition of the potassium-evoked rise in synaptosomal cytosolic Ca2+ levels was partially attenuated by the opioid antagonist quadazocine and insensitive to the -opioid specific antagonist ICI 174,864 and the opioid-preferring antagonists naloxone and naltrexone. Quadazocine also reversed U-62,066E inhibition of the potassium-evoked release of L-glutamate, but not dynorphin B-like immunoreactivity. These results suggest that opioid agonists inhibit transmitter release from mossy fiber terminals through both opioid and non- opioid receptor mediated mechanisms.  相似文献   

12.
Capsaicin has been shown to evoke the release of substance P (SP) from small diameter primary afferent fibers. Using an in vivo perfusion of the rat spinal cord, this study examined the pharmacology of opioid receptor systems which modulate the capsaicin-evoked release of SP. The addition of capsaicin (200 μM) to the perfusate raised SP-like immunoreactivity (SP-LI) from resting levels of 31±5 to 74±14 pg/ml or an increase of 139% above the baseline. Using high pressure liquid chromatography (HPLC) the identity of the released SP-LI was determined to coelute primarily with authentic SP or the oxidized form of SP. Opioid receptor agonists were added to the perfusate and their ability to inhibit capsaicin-evoked release of SP-LI was assessed. Morphine (10–100 μM), DAGO (1–100 μM), DPLPE (10–100 μM), but not U50488H (100 μM) produced a dose-dependent reduction in the capsaicin-evoked release of SP-LI. Pretreatment with the opioid receptor antagonist naloxone (1 mg/kg, IP) had no effect on the basal or capsaicin-evoked release of SP-LI. Naloxone pretreatment was able to antagonize completely the opioid-produced inhibition of capsaicin-evoked SP-LI release. These data indicate that the release of SP from primary afferent fibers can be modulated by the activation of mu or delta but not kappa opioid receptors. Further, these data support the hypothesis that spinally administered mu and delta opioid agonists may produce their antinociceptive effect through the presynaptic inhibition of neuropeptide release from small diameter primary afferent fibers.  相似文献   

13.
Isosterism is commonly used in drug discovery and development to address stability, selectivity, toxicity, pharmacokinetics, and efficacy issues. A series of 14-O-substituted naltrexone derivatives were identified as potent mu opioid receptor (MOR) antagonists with improved selectivity over the kappa opioid receptor (KOR) and the delta opioid receptor (DOR), compared to naltrexone. Since esters are not metabolically very stable under typical physiological conditions, their corresponding amide analogs were thus synthesized and biologically evaluated. Unlike their isosteres, most of these novel ligands seem to be dually selective for the MOR and the KOR over the DOR. The restricted flexibility of the amide bond linkage might be responsible for their altered selectivity profile. However, the majority of the 14-N-substituted naltrexone derivatives produced marginal or no MOR stimulation in the 35S-GTP[γS] assay, which resembled their ester analogs. The current study thus indicated that the 14-substituted naltrexone isosteres are not bioisosteres since they have distinctive pharmacological profile with the regard to their opioid receptor binding affinity and selectivity.  相似文献   

14.
The present study was designed to investigate basal and LH-induced steroidogenesis in porcine theca cells from large follicles in response to various concentrations (1-1000 nM) of mu opioid receptor agonists (beta-endorphin, DAMGO, FK 33-824), delta receptor agonists (met-enkephalin, leu-enkephalin, DPLPE) and kappa receptor agonists (dynorphin A, dynorphin B, U 50488). Agonists of mu opioid receptors suppressed basal androstenedione (A4), testosterone (T) and oestradiol-17beta (E2) secretion and enhanced LH-induced A4 and T release by theca cells. The inhibitory effect of the agonists on E2 secretion was abolished in the presence of LH. All delta receptor agonists depressed basal progesterone (P4) output. However, the influence of these agents on LH-treated cells was negligible. Among delta receptor agonist used only leu-enkephalin and DPLPE at the lowest concentrations inhibited basal A4 release. The presence of LH in culture media changed the influence of these opioids from inhibitory to stimulatory. Similarly, DPLPE reduced T secretion by non-stimulated theca cells and enhanced T secretion of stimulated cells. All of delta agonists inhibited basal E2 secretion and unaffected its release from LH-treated theca cells. Agonists of kappa receptors inhibited basal, non-stimulated, P4 secretion and two of them (dynorphin B, U 50488) potentiated LH-induced P4 output. Basal A4 and T release remained unaffected by kappa agonist treatment, but the cells cultured in the presence of LH generally increased both androgen production in response to these opioids. Basal secretion of E2 was also suppressed by kappa agonists. This inhibitory effect was not observed when the cells were additionally treated with LH. In view of these findings we suggest that opioid peptides derived from three major opioid precursors may directly participate in the regulation of porcine theca cell steroidogenesis.  相似文献   

15.
A new series of 3-aryl pyridone based kappa opioid receptor agonists was designed and synthesised, based on an understanding of the classical kappa opioid receptor pharmacophore. The most potent of the new compounds were comparable to U-69,593 in receptor affinity, selectivity and functional agonist effect at the cloned human kappa opioid receptor.  相似文献   

16.
Opioid agonists bind to GTP-binding (G-protein)-coupled receptors to inhibit adenylyl cyclase. To explore the relationship between opioid receptor binding sites and opioid-inhibited adenylyl cyclase, membranes from rat striatum were incubated with agents that block opioid receptor binding. These agents included irreversible opioid agonists (oxymorphone-p-nitrophenylhydrazone), irreversible antagonists [naloxonazine, beta-funaltrexamine, and beta-chlornaltrexamine (beta-CNA)], and phospholipase A2. After preincubation with these agents, the same membranes were assayed for high-affinity opioid receptor binding [3H-labeled D-alanine-4-N-methylphenylalanine-5-glycine-ol-enkephalin (mu), 3H-labeled 2-D-serine-5-L-leucine-6-L-threonine enkephalin (delta), and [3H]ethylketocylazocine (EKC) sites] and opioid-inhibited adenylyl cyclase. Although most agents produced persistent blockade in binding of ligands to high-affinity mu, delta, and EKC sites, no change in opioid-inhibited adenylyl cyclase was detected. In most treated membranes, both the IC50 and the maximal inhibition of adenylyl cyclase by opioid agonists were identical to values in untreated membranes. Only beta-CNA blocked opioid-inhibited adenylyl cyclase by decreasing maximal inhibition and increasing the IC50 of opioid agonists. This effect of beta-CNA was not due to nonspecific interactions with G(i), Gs, or the catalytic unit of adenylyl cyclase, as neither guanylylimidodiphosphate-inhibited, NaF-stimulated, nor forskolin-stimulated activity was altered by beta-CNA pretreatment. Phospholipase A2 decreased opioid-inhibited adenylyl cyclase only when the enzyme was incubated with brain membranes in the presence of NaCl and GTP. These results confirm that the receptors that inhibit adenylyl cyclase in brain do not correspond to the high-affinity mu, delta, or EKC sites identified in brain by traditional binding studies.  相似文献   

17.
Prejunctional effects of opioids were examined in the perfused mesentery of two species: the rat and rabbit. Use of agonists selective for subtypes of mu, delta, and kappa opioid receptors produced no effect on contractile responses to adrenergic nerve stimulation in the rat perfused mesentery, except for small effects of the kappa agonist EKC, which may be non specific. In contrast, mu, delta and kappa receptors appear to be present in the rabbit. The mu selective agonist, DAMGO, kappa agonist, ethylketocyclazocine, and delta agonists, DPDPE and [Leu5]-enkephalin, all produced significant inhibition of contractile responses to transmural nerve stimulation. The inhibitory effect was greatest for ethylketocyclazocine. To test the possibility that prejunctional activation of alpha 2 adrenoceptors with endogenous norepinephrine might decrease the activity of prejunctional opioid receptors in the rabbit, inhibitory effects of delta and kappa selective agonists were tested in the presence of 10(-7) M yohimbine. Inhibitory responses of the kappa selective agonist ethylketocyclazocine were enhanced, while that of delta selective agonists [Leu5]-enkephalin and DPDPE remained unchanged when yohimbine was present. Thus, the effects of opioids vary and depend on the tissue and receptor subtypes they act upon. Furthermore, the enhanced inhibitory effect of opioid receptor activation in the presence of yohimbine is not found for all opioid receptors.  相似文献   

18.
Opioid peptides have been implicated in shock-associated hypotension. Our aim was to find out whether opioid agonists have direct vasodilator actions on vascular smooth muscle. The study was conducted on rat abdominal aortic rings. In rings precontracted with either norepinephrine, prostaglandin F2 alpha, or high potassium Krebs (HPK), the effects of the opioid agonists tested (morphine, U50488H, ethylketocyclazocine (EKC), and bremazocine) depended on the precontracting agent used. HPK-precontracted rings were relaxed by all agonists tested. In norepinephrine-precontracted rings, all caused contraction at low concentrations and relaxation at high concentrations except bremazocine, which caused only relaxation. In prostaglandin F2 alpha-precontracted rings, U50488H produced contraction at low concentrations and relaxation at high concentrations while EKC caused only relaxation and morphine or bremazocine caused only contraction. All relaxant responses were endothelium-independent and were antagonized by verapamil but not by a number of antagonists including naloxone. MR2266, propranolol, diphenhydramine, cimetidine, and indomethacin. They may reflect calcium channel blockade. Morphine-induced vasoconstriction was antagonized by high concentrations of of naloxone or mepyramine and may be due to release of histamine by a naloxone-sensitive mechanism. We conclude that (a) the opioid agonists tested exert direct actions on vascular smooth muscle; (b) the nature of the response depended not only on the agonist used and its concentration but also on the agent used to precontract the tissue; and (c) it is unlikely that direct actions of endogenous opioids contribute to the shock-associated hypotension because high doses were needed to elicit them.  相似文献   

19.
The ability of neuropeptide Y to potently stimulate food intake is dependent in part upon the functioning of mu and kappa opioid receptors. The combined use of selective opioid antagonists directed against mu, delta or kappa receptors and antisense probes directed against specific exons of the MOR-1, DOR-1, KOR-1 and KOR-3/ORL-1 opioid receptor genes has been successful in characterizing the precise receptor subpopulations mediating feeding elicited by opioid peptides and agonists as well as homeostatic challenges. The present study examined the dose-dependent (5-80 nmol) cerebroventricular actions of general and selective mu, delta, and kappa1 opioid receptor antagonists together with antisense probes directed against each of the four exons of the MOR-1 opioid receptor gene and each of the three exons of the DOR-1, KOR-1, and KOR-3/ORL-1 opioid receptor genes upon feeding elicited by cerebroventricular NPY (0.47 nmol, 2 ug). NPY-induced feeding was dose-dependently decreased and sometimes eliminated following pretreatment with general, mu, delta, and kappa1 opioid receptor antagonists. Moreover, NPY-induced feeding was significantly and markedly reduced by antisense probes directed against exons 1, 2, and 3 of the MOR-1 gene, exons 1 and 2 of the DOR-1 gene, exons 1, 2, and 3 of the KOR-1 gene, and exon 3 of the KOR-3/ORL-1 gene. Thus, whereas the opioid peptides, beta-endorphin and dynorphin A(1-17) elicit feeding responses that are respectively more dependent upon mu and kappa opioid receptors and their genes, the opioid mediation of NPY-induced feeding appears to involve all three major opioid receptor subtypes in a manner similar to that observed for feeding responses following glucoprivation or lipoprivation.  相似文献   

20.
The pharmacological profile of naltrindole (NTI) and three of its analogues, N-methyl-NTI (N-Me-NTI), oxymorphindole (OMI) and naltriben (NTB) were studied in antinociceptive assays. The compounds were found to have agonist activities that appear to be mediated mainly by kappa opioid receptors because norbinaltorphimine (nor-BNI), the selective kappa opioid receptor antagonist inhibited their effects significantly. All of the compounds, behaved as antagonists at doses that were lower than those that produced agonist effects and they possessed a profile that was very selective for inhibiting the antinociceptive activities of delta opioid receptor agonists. Differential antagonism by NTB of the activities of DSLET and DPDPE was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号