首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Folding–unfolding caused by environmental changes play crucial regulatory roles in protein functions. To gain an insight into these for DLC8, a cargo adaptor in dynein motor complex, we investigated here the unfolding of homodimeric DLC8 by GdnHCl, a standard unfolding agent. Fluorescence spectroscopy revealed a three-state unfolding transition with midpoints at 1.5 and 4.0 M GdnHCl. The HSQC spectrum at 1.5 M GdnHCl displayed peaks belonging to a folded monomer. NMR chemical shift perturbations, line broadening effects and 15N relaxation measurements at low GdnHCl concentrations identified a hierarchy in the unfolding process, with the dimer interface – the cargo binding site – being the most susceptible followed by the helices in the interior. Similar observations were made earlier for small pH perturbations and thus the early unfolding events appear to be intrinsic to the protein. These, by virtue of their location, influence target binding efficacies and thus have important regulatory implications.  相似文献   

2.
Dynein light chain (DLC8) is the smallest subunit of the dynein motor complex, which is known to act as a cargo adaptor in intracellular trafficking. The protein exists as a pure dimer at physiological pH and a completely folded monomer below pH 4. Here, we have determined the energy landscape of the dimeric protein using a combination of optical techniques and native-state hydrogen exchange of amide groups, the former giving the global features and the latter yielding the residue level details. The data indicated the presence of intermediates along the equilibrium unfolding transition. The hydrogen exchange data suggested that the molecule has differential stability in its various segments. We deduce from the free energy data that the antiparallel beta-sheets (beta4 and beta5) that form the hydrophobic core of the protein and the alpha2 helix, all of which are highly protected with regard to hydrogen exchange, contribute significantly to the initial step of the protein folding mechanism. Denaturant-dependent hydrogen exchange indicated further that some amides exchange via local fluctuations, whereas there are others which exchange via global unfolding events. Implications of these to cargo adaptability of the dimer are discussed.  相似文献   

3.
Understanding protein stability at residue level detail in the native state ensemble of a protein is crucial to understanding its biological function. At the same time, deriving thermodynamic parameters using conventional spectroscopic and calorimetric techniques remains a major challenge for some proteins due to protein aggregation and irreversibility of denaturation at higher temperature values. In this regard, we describe here the NMR investigations on the conformational stabilities and related thermodynamic parameters such as local unfolding enthalpies, heat capacities and transition midpoints in DLC8 dimer, by using temperature dependent native state hydrogen exchange; this protein aggregates at high (>65°C) temperatures. The stability (free energy) of the native state was found to vary substantially with temperature at every residue. Significant differences were found in the thermodynamic parameters at individual residue sites indicating that the local environments in the protein structure would respond differently to external perturbations; this reflects on plasticity differences in different regions of the protein. Further, comparison of this data with similar data obtained from GdnHCl dependent native state hydrogen exchange indicated many similarities at residue level, suggesting that local unfolding transitions may be similar in both the cases. This has implications for the folding/unfolding mechanisms of the protein. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Lactoperoxidase (LPO), a member of the peroxidase-cyclooxygenase superfamily, is found in multiple human exocrine secretions and acts as a first line of defense against invading microorganisms by production of antimicrobial oxidants. Because of its ability to efficiently catalyze one- and two-electron oxidation reactions of inorganic and organic compounds, the heme peroxidase is widely used in food biotechnology, cosmetic industry, and diagnostic kits. In order to probe its structural integrity, conformational, and thermal stability, we have undertaken a comprehensive investigation by using complementary biophysical techniques including UV-Vis, circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry (DSC). The oxidoreductase exhibits a high chemical and thermal stability under oxidizing conditions but is significantly destabilized by addition of DTT. Due to its unique ester bonds between the prosthetic group and the protein as well as six intra-chain disulfides, unfolding of the central compact (-helical core occurs concomitantly with denaturation of the heme cavity. The corresponding enthalpic and entropic contributions to the free enthalpy of unfolding are presented. Together with spectroscopic data they will be discussed with respect to the known structure of bovine LPO and homologous myeloperoxidase as well as to its practical application.  相似文献   

5.
Dalal K  Pio F 《FEBS letters》2006,580(13):3083-3090
The PAAD domain is a conserved domain recently identified in more than 35 human proteins that are involved in apoptosis and inflammatory signaling pathways. Structural studies have confirmed that this domain belongs to the death domain superfamily which includes PAAD/CARD/DED/DD families. Recently, the 3D structures determined by NMR of NALP1 and ASC PAAD domain, members of the PAAD family, have shown that it is composed of a 6 helix bundle as with other death domain family members. However, helix-3 in the solved structures is unordered in solution. In this study we compare the thermodynamic, folding and stability properties of different members of the PAAD and CARD families and investigate structural conformational changes induced by the helix inducers trifluoroethanol and SDS on the PAAD domain of IFI16 and on the CARD domain of RAIDD. We show that inside the PAAD and CARD families, members have similar thermodynamic properties, however, the DeltaG of folding for PAAD and CARD members are, respectively, -1.4 and -5.5 kcal mol(-1). This difference is attributed to less alpha helical content for PAAD due to the unfolding of helix-3 that lowers bonded energy and increases disorder when compared to CARD members. Despite identical fold between PAAD and CARD families but limited sequence identity, there are striking differences in the thermodynamics of both families.  相似文献   

6.
Single-domain antibody fragments with high conformational stability   总被引:10,自引:0,他引:10       下载免费PDF全文
A variety of techniques, including high-pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single-domain antigen binders derived from camelid heavy-chain antibodies with specificities for lysozymes, beta-lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical-induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two-state mechanism (N <--> U), where only the native and the denatured states are significantly populated. Thermally-induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat-induced denaturation (apparent T(m) = 60-80 degrees C), and display high conformational stabilities (DeltaG(H(2)O) = 30-60 kJ mole(-1)). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy-chain antibody fragments are of special interest for biotechnological and medical applications.  相似文献   

7.
Pro-apoptotic Bax is a soluble and monomeric protein under normal physiological conditions. Upon its activation substantial structural rearrangements occur: The protein inserts into the mitochondrial outer membrane and forms higher molecular weight oligomers. Subsequently, the cells can undergo apoptosis. In our studies, we focused on the structural rearrangements of Bax during oligomerization and on the protein stability. Both protein conformations exhibit high stability against thermal denaturation, chemically induced unfolding and proteolytic processing. The oligomeric protein is stable up to 90 °C as well as in solutions of 8 M urea or 6 M guanidinium hydrochloride. Helix 9 appears accessible in the monomer but hidden in the oligomer assessed by proteolysis. Tryptophan fluorescence indicates that the environment of the C-terminal protein half becomes more apolar upon oligomerization, whereas the loop region between helices 1 and 2 gets solvent exposed.  相似文献   

8.
The present study characterizes the unfolding and folding processes of recombinant manganese peroxidase. This enzyme contains five disulfide bonds, two calcium ions, and one heme prosthetic group. Circular dichroism in the far UV was used to monitor global changes of the protein secondary structure, whereas UV-visible spectroscopy of the Soret band provided information about local changes in the heme cavity. The effects of reducing agents, oxidizing agents, and denaturants on this process were investigated. In addition to affecting the secondary structure content, these factors also affect the binding of the heme and the calcium ions, both of which have a significant effect on the folding process. Our results also show that denaturants induce irreversible changes, which are most likely due to the inability of the denatured protein to rebind either calcium or the heme. Breaking of disulfide bonds by 30 mM dithiothreitol causes complete unfolding of recombinant manganese peroxidase. The unfolding process was also studied at low and high pH, where the protein reaches the final unfolded state through two different intermediate states. The data also indicate that only the acidic folding-unfolding process is reversible. Our results indicate a complex synergistic relationship between the secondary structure content, the tertiary structure arrangement, and the binding of the heme and the calcium ions and disulfide bridge formation.  相似文献   

9.
Dynein light chain protein, a part of the cytoplasmic motor assembly, is a homodimer at physiological pH and dissociates below pH 4.5 to a monomer. The dimer binds to a variety of cargo, whereas the monomer does not bind any of the target proteins. We report here the pH induced stepwise structural and motional changes in the protein, as derived from line broadening and 15N transverse relaxation measurements. At pH 7 and below until 5, partial protonation and consequent interconversion between molecules carrying protonated and neutral histidines, causes conformational dynamics in the dimeric protein and this increases with decreasing pH. Enhanced dynamics in turn leads to partial loosening of the structure. This would have implications for different efficacies of binding by target proteins due to small variations in pH in different parts of the cell, and hence for cargo trafficking from one part to another. Below pH 5, enhanced charge repulsions, partial loss of hydrophobic interactions, and destabilization of H-bonds across the dimer interface cause further loosening of the dimeric structure, leading eventually to the dissociation of the dimer.  相似文献   

10.
Under the assumption of equivalent heat capacity values, the differential free energy of stability for a pair of proteins midway between their thermal unfolding transition temperatures is shown to be independent of DeltaC(p) up to its cubic term in DeltaT(m). For model calculations reflecting the nearly 30 degrees C difference in T(m) for the adenylate kinases from the arctic bacterium Bacillus globisporus and the thermophilic bacterium Geobacillus stearothermophilus, the resultant error in estimating DeltaDeltaG by the formula 0.5 [DeltaS(T(m1))(1)+DeltaS(T(m2)) (2)] DeltaT(m) is less than 1%. Combined with the analogous thermal unfolding data for the adenylate kinase from Escherichia coli, these three homologous proteins exhibit T(m) and DeltaS(T(m)) values consistent with differential entropy and enthalpy contributions of equal magnitude. When entropy-enthalpy compensation holds for the differential free energy of stability, the incremental changes in T(m) values are shown to be proportionate to the changes in free energy.  相似文献   

11.
The results of minimal model calculations indicate that the stability and the kinetic accessibility of the native state of small globular proteins are controlled by few "hot" sites. By means of molecular dynamics simulations around the native conformation, which describe the protein and the surrounding solvent at the all-atom level, an accurate and compact energetic map of the native state of the protein is generated. This map is further simplified by means of an eigenvalue decomposition. The components of the eigenvector associated with the lowest eigenvalue indicate which hot sites are likely to be responsible for the stability and for the rapid folding of the protein. The comparison of the results of the model with the findings of mutagenesis experiments performed for four small proteins show that the eigenvalue decomposition method is able to identify between 60% and 80% of these (hot) sites.  相似文献   

12.
Disulfide bonds are required to stabilize the folded conformations of many proteins. The rates and equilibria of processes involved in disulfide bond formation and breakage can be manipulated experimentally and can be used to obtain important information about protein folding and stability. A number of experimental procedures for studying these processes, and approaches to interpreting the resulting data, are described here.  相似文献   

13.
Clitocypin, a new type of cysteine proteinase inhibitor from the mushroom Clitocybe nebularis, is a 34-kDa homodimer lacking disulphide bonds, reported to have unusual stability properties. Sequence similarity is limited solely to certain proteins from mushrooms. Infrared spectroscopy shows that clitocypin is a high beta-structure protein which was lost at high temperatures. The far UV circular dichroism spectrum is not that of classical beta-structure, but similar to those of a group of small beta-strand proteins, with a peak at 189nm and a trough at 202nm. An aromatic peak at 232nm and infrared bands at 1633 and 1515cm(-1) associated with the peptide backbone and the tyrosine microenvironment, respectively, were used to characterize the thermal unfolding. The reversible transition has a midpoint at 67 degrees C, with DeltaG=34kJ/mol and DeltaH=300kJ/mol, and is, unusually, independent of protein concentration. The kinetics of thermal unfolding and refolding are slow, with activation energies of 167 and 44kJ/mol, respectively. A model for folding and assembly is discussed.  相似文献   

14.
A flexible approach for understanding protein stability   总被引:1,自引:0,他引:1  
A distance constraint model (DCM) is presented that identifies flexible regions within protein structure consistent with specified thermodynamic condition. The DCM is based on a rigorous free energy decomposition scheme representing structure as fluctuating constraint topologies. Entropy non-additivity is problematic for naive decompositions, limiting the success of heat capacity predictions. The DCM resolves non-additivity by summing over independent entropic components determined by an efficient network-rigidity algorithm. A minimal 3-parameter DCM is demonstrated to accurately reproduce experimental heat capacity curves. Free energy landscapes and quantitative stability-flexibility relationships are obtained in terms of global flexibility. Several connections to experiment are made.  相似文献   

15.
We present circular dichroism (CD), steady state fluorescence and multidimensional NMR investigations on the equilibrium unfolding of monomeric dynein light chain protein (DLC8) by urea and guanidine hydrochloride (GdnHCl). Quantitative analysis of the CD and fluorescence denaturation curves reveals that urea unfolding is a two-state process, whereas guanidine unfolding is more complex. NMR investigations in the native state and in the near native states created by low denaturant concentrations enabled residue level characterization of the early structural and dynamic perturbations by the two denaturants. Firstly, (15)N transverse relaxation rates in the native state indicate that the regions around N10, Q27, the loop between beta2 and beta4 strands, and K87 at the C-terminal are potential unfolding initiation sites in the protein. Amide and (15)N chemical shift perturbations indicate different accessibilities of the residues along the chain and help identify locations of the early perturbations by the two denaturants. Guanidine and urea are seen to interact at several sites some of which are different in the two cases. Notable among the common interaction site is that around K87 which is in close proximity to W54 on the protein structure, but the interaction modes of the two denaturants are different. The secondary chemical shifts indicate that the structural perturbation by 1M urea is small, compared to that by guanidine which is more encompassing over the length of the chain. The probable (phi, psi) changes at the individual residues have been calculated using the TALOS algorithm. It appears that the helices in the protein are significantly perturbed by guanidine. Further, comparison of the spectral density functions of the native and the two near native states in the two denaturants implicate greater loosening of the structure by guanidine as compared to that by urea, even though the structures are still in the native state ensemble. These differences in the early perturbations of the native state structure and dynamics by the two denaturants might direct the protein along different pathways, as the unfolding progresses on further increasing the denaturant concentration.  相似文献   

16.
Higher plant thylakoid membranes contain a protein kinase that phosphorylates certain threonine residues of light-harvesting complex II (LHCII), the main light-harvesting antenna complexes of photosystem II (PSII) and some other phosphoproteins (Allen, Biochim Biophys Acta 1098:275, 1992). While it has been established that phosphorylation induces a conformational change of LHCII and also brings about changes in the lateral organization of the thylakoid membrane, it is not clear how phosphorylation affects the dynamic architecture of the thylakoid membranes. In order to contribute to the elucidation of this complex question, we have investigated the effect of duroquinol-induced phosphorylation on the membrane ultrastructure and the thermal and light stability of the chiral macrodomains and of the trimeric organization of LHCII. As shown by small angle neutron scattering on thylakoid membranes, duroquinol treatment induced a moderate (~10%) increase in the repeat distance of stroma membranes, and phosphorylation caused an additional loss of the scattering intensity, which is probably associated with the partial unstacking of the granum membranes. Circular dichroism (CD) measurements also revealed only minor changes in the chiral macro-organization of the complexes and in the oligomerization state of LHCII. However, temperature dependences of characteristic CD bands showed that phosphorylation significantly decreased the thermal stability of the chiral macrodomains in phosphorylated compared to the non-phosphorylated samples (in leaves and isolated thylakoid membranes, from 48.3°C to 42.6°C and from 47.5°C to 44.3°C, respectively). As shown by non-denaturing PAGE of thylakoid membranes and CD spectroscopy on EDTA washed membranes, phosphorylation decreased by about 5°C, the trimer-to-monomer transition temperature of LHCII. It also enhanced the light-induced disassembly of the chiral macrodomains and the monomerization of the LHCII trimers at 25°C. These data strongly suggest that phosphorylation of the membranes considerably facilitates the heat- and light-inducible reorganizations in the thylakoid membranes and thus enhances the structural flexibility of the membrane architecture.  相似文献   

17.
The structure of wild-type mouse prion protein mPrP(23-231) consists of two distinctive segments with approximately equal size, a disordered and flexible N-terminal domain encompassing residues 23-124 and a largely structured C-terminal domain containing about 40% of helical structure and stabilized by one disulfide bond (Cys(178)-Cys(213)). We have expressed a mPrP mutant with 4 Ala/Ser-->Cys replacements, two each at the N-(Cys(36), Cys(112)) and C-(Cys(134), Cys(169)) domains. Our specific aims are to study the interaction between N- and C-domains of mPrP during the oxidative folding and to produce stabilized isomers of mPrP for further analysis. Oxidative folding of fully reduced mutant, mPrP(6C), generates one predominant 3-disulfide isomer, designated as N-mPrP(3SS), which comprises the native disulfide (Cys(178)-Cys(213)) and two non-native disulfide bonds (Cys(36)-Cys(134) and Cys(112)-Cys(169)) that covalently connect the N- and C-domains. In comparison to wild-type mPrP(23-231), N-mPrP(3SS) exhibits an indistinguishable CD spectra, a similar conformational stability in the absence of thiol and a reduced ability to aggregate. In the presence of thiol catalyst and denaturant, N-mPrP(3SS) unfolds and generates diverse isomers that are amenable to further isolation, structural and functional analysis.  相似文献   

18.
The folding of multisubunit proteins is of tremendous biological significance since the large majority of proteins exist as protein-protein complexes. Extensive experimental and computational studies have provided fundamental insights into the principles of folding of small monomeric proteins. Recently, important advances have been made in extending folding studies to multisubunit proteins, in particular homodimeric proteins. This review summarizes the equilibrium and kinetic theory and models underlying the quantitative analysis of dimeric protein folding using chemical denaturation, as well as the experimental results that have been obtained. Although various principles identified for monomer folding also apply to the folding of dimeric proteins, the effects of subunit association can manifest in complex ways, and are frequently overlooked. Changes in molecularity typically give rise to very different overall folding behaviour than is observed for monomeric proteins. The results obtained for dimers have provided key insights pertinent to understanding biological assembly and regulation of multisubunit proteins. These advances have set the stage for future advances in folding involving protein-protein interactions for natural multisubunit proteins and unnatural assemblies involved in disease.  相似文献   

19.
Steady-state intrinsic tryptophan fluorescence spectroscopy is used as a rapid, robust and economic way for screening the thermal protein conformational stability in various formulations used during the early biotechnology development phase. The most important parameters affecting protein stability in a liquid formulation, e. g. during the initial purification steps or preformulation development, are the pH of the solution, ionic strength, presence of excipients and combinations thereof. A well-defined protocol is presented for the investigation of the thermal conformational stability of proteins. This allows the determination of the denaturation temperature as a function of solution conditions. Using intrinsic tryptophan fluorescence spectroscopy for monitoring the denaturation and folding of proteins, it is crucial to understand the influence of different formulation parameters on the intrinsic fluorescence probes of proteins. Therefore, we have re-evaluated and re-assessed the influence of temperature, pH, ionic strength, buffer composition on the emission spectra of tryptophan, phenylalanine and tyrosine to correctly analyse and evaluate the data obtained from thermal-induced protein denaturation as a function of the solution parameters mentioned above. The results of this study are a prerequisite for using this method as a screening assay for analysing the conformational stability of proteins in solution. The data obtained from intrinsic protein fluorescence spectroscopy are compared to data derived from calorimetry. The advantage, challenges and applicability using intrinsic tryptophan fluorescence spectroscopy as a routine development method in pharmaceutical biotechnology are discussed.  相似文献   

20.
Lens alpha-crystallin, alpha A- and alpha B-crystallin, and Hsp27 are members of the small heat shock protein family. Both alpha A- and alpha B-crystallin are expressed in the lens and serve as structural proteins and as chaperones, but alpha B-crystallin is also expressed in nonlenticular organs where Hsp27, rather than alpha A-crystallin, is expressed along with alpha B-crystallin. It is not known what additional function Hsp27 has besides as a heat shock protein, but it may serve, as alpha A-crystallin does in the lens, to stabilize alpha B-crystallin. In this study, we investigate aspects on conformation and thermal stability for the mixture of Hsp27 and alpha B-crystallin. Size exclusion chromatography, circular dichroism (CD), and light scattering measurements indicated that Hsp27 prevented alpha B-crystallin from heat-induced structural changes and high molecular weight (HMW) aggregation. The results indicate that Hsp27 indeed promotes stability of alpha B-crystallin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号