首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of adipogenic protein induction have led to a new appreciation of the role of adipose tissue as an endocrine organ. Adipocyte-derived "adipokines" such as adiponectin, leptin, and visceral adipose tissue-derived serine protease inhibitor (vaspin) exert hormone-like activities at the systemic level. In this study, we examined the secretome of primary cultures of human subcutaneous adipose-derived stem cells as an in vitro model of adipogenesis. Conditioned media obtained from four individual female donors after culture in uninduced or adipogenic induced conditions were compared by two-dimensional gel electrophoresis and tandem mass spectrometry. Over 80 individual protein features showing > or =2-fold relative differences were examined. Approximately 50% of the identified proteins have been described previously in the secretome of murine 3T3-L1 preadipocytes or in the interstitial fluid derived from human mammary gland adipose tissue. As reported by others, we found that the secretome included proteins such as actin and lactate dehydrogenase that do not display a leader sequence or transmembrane domain and are classified as "cytoplasmic" in origin. Moreover we detected a number of established adipokines such as adiponectin and plasminogen activator inhibitor 1. Of particular interest was the presence of multiple serine protease inhibitors (serpins). In addition to plasminogen activator inhibitor 1, these included pigment epithelium-derived factor (confirmed by Western immunoblot), placental thrombin inhibitor, pregnancy zone protein, and protease C1 inhibitor. These findings, together with the recent identification of vaspin, suggest that the serpin protein family warrants further proteomics investigation with respect to the etiology of obesity and type 2 diabetes.  相似文献   

2.
Although obesity is a risk factor for development of type 2 diabetes and chemical modification of proteins by advanced glycoxidation and lipoxidation end products is implicated in the development of diabetic complications, little is known about the chemical modification of proteins in adipocytes or adipose tissue. In this study we show that S-(2-succinyl)cysteine (2SC), the product of chemical modification of proteins by the Krebs cycle intermediate, fumarate, is significantly increased during maturation of 3T3-L1 fibroblasts to adipocytes. Fumarate concentration increased > or =5-fold during adipogenesis in medium containing 30 mm glucose, producing a > or =10-fold increase in 2SC-proteins in adipocytes compared with undifferentiated fibroblasts grown in the same high glucose medium. The elevated glucose concentration in the medium during adipocyte maturation correlated with the increase in 2SC, whereas the concentration of the advanced glycoxidation and lipoxidation end products, N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine, was unchanged under these conditions. Adipocyte proteins were separated by one- and two-dimensional electrophoresis and approximately 60 2SC-proteins were detected using an anti-2SC polyclonal antibody. Several of the prominent and well resolved proteins were identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry. These include cytoskeletal proteins, enzymes, heat shock and chaperone proteins, regulatory proteins, and a fatty acid-binding protein. We propose that the increase in fumarate and 2SC is the result of mitochondrial stress in the adipocyte during adipogenesis and that 2SC may be a useful biomarker of mitochondrial stress in obesity, insulin resistance, and diabetes.  相似文献   

3.
Synthesis of a family of proteins called “heat shock” proteins is enhanced in cells in response to a wide variety of environmental stresses. This suggests that these proteins may have functions essential to cell survival under stressful conditions. A causative relationship between heat shock protein synthesis and development of thermotolerance would imply that agents known to induce heat shock protein synthesis, such as sodium arsenite, also induce thermotolerance. Conversely, agents known to induce thermotolerance, such as ethanol, would also enhance heat shock protein synthesis. To test this hypothesis, I have examined the effect of sodium arsenite or ethanol treatment on protein synthesis and cell survival in Chinese hamster ovary HA-1 cells. After either sodium arsenite or ethanol treatment, the synthesis of heat shock proteins was greatly enhanced over that of untreated cells. In parallel, cell survival was increased as much as 104-fold when cells exposed to either agent were challenged by a subsequent heat treatment. The synthesis of heat shock proteins correlated well with the development of thermotolerance. A qualitative analysis of individual proteins suggests that the synthesis of 70,000 and 87,000 molecular weight proteins most closely mirrored the development of thermotolerance. The results, therefore, strongly reinforce the hypothesis that a causal relationship exists between the enhanced synthesis of heat shock protein and cell survival under specific stresses.  相似文献   

4.
Serial application of strong cation-exchange and diagonal reversed-phase chromatography selecting methionyl peptides by stepwise shifting them from their reduced to their sulfoxide and sulfone forms generates a four-stage fractionation system, allowing high coverage analysis of complex proteome digests by LC-MALDI-MS/MS. Application to the proteome of a human multipotent adult progenitor cell line (MAPC) identified 2151 proteins with high confidence as on average four MS/MS-spectra were linked to each protein. Our dataset contains several novel, potential marker proteins that may be evaluated as affinity-anchors for isolating different adult stem cells in further studies. Furthermore, at least 2 tyrosine kinases that were previously linked to the self-renewal potential of stem cells were identified, validating the stemness of the analyzed cells. We also present data hinting at possible involvement of the ubiquitin/proteasome machinery in steering proliferation and/or differentiation of MAPC. Finally, following comparison of the MAPC proteome with proteomes of four human differentiated cell lines reveals differential usage of chromosomal information: compared to differentiated cells, MAPC do not appear to hold any preference for expressing genes located on specific chromosomes.  相似文献   

5.

Background  

Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK) 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl) and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue.  相似文献   

6.
With more than 1.4 billion overweight or obese adults worldwide, obesity and progression of the metabolic syndrome are major health and economic challenges. To address mechanisms of obesity, adipose tissue-derived mesenchymal stem cells (ADSCs) are being studied to detail the molecular mechanisms involved in adipogenic differentiation. Activation of the Wnt signalling pathway has inhibited adipogenesis from precursor cells. In our study, we examined this anti-adipogenic effect in further detail stimulating Wnt with lithium chloride (LiCl) and 6-bromo indirubin 3’oxime (BIO). We also examined the effect of Wnt inhibition using secreted frizzled-related protein 4 (sFRP4), which we have previously shown to be pro-apoptotic, anti-angiogenic, and anti-tumorigenic. Wnt stimulation in LiCl and BIO-treated ADSCs resulted in a significant reduction (2.7-fold and 12-fold respectively) in lipid accumulation as measured by Oil red O staining while Wnt inhibition with sFRP4 induced a 1.5-fold increase in lipid accumulation. Furthermore, there was significant 1.2-fold increase in peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα), and 1.3-fold increase in acetyl CoA carboxylase protein levels. In contrast, the expression of adipogenic proteins (PPARγ, C/EBPα, and acetyl CoA carboxylase) were decreased significantly with LiCl (by 1.6, 2.6, and 1.9-fold respectively) and BIO (by 7, 17, and 5.6-fold respectively) treatments. These investigations demonstrate interplay between Wnt antagonism and Wnt activation during adipogenesis and indicate pathways for therapeutic intervention to control this process.  相似文献   

7.
Most heat shock proteins operate as molecular chaperones and play a central role in the maintenance of normal cellular function. In skeletal muscle, members of the alpha-crystallin domain-containing family of small heat shock proteins are believed to form a cohort of essential stress proteins. Since alphaB-crystallin (alphaBC/HspB5) and the cardiovascular heat shock protein (cvHsp/HspB7) are both implicated in the molecular response to fibre transformation and muscle wasting, it was of interest to investigate the fate of these stress proteins in young adult versus aged muscle. The age-related loss of skeletal muscle mass and strength, now generally referred to as sarcopenia, is one of the most striking features of the senescent organism. In order to better understand the molecular pathogenesis of age-related muscle wasting, we have performed a two-dimensional gel electrophoretic analysis, immunoblotting and confocal microscopy study of aged rat gastrocnemius muscle. Fluorescent labelling of the electrophoretically separated soluble muscle proteome revealed an overall relatively comparable protein expression pattern of young adult versus aged fibres, but clearly an up-regulation of alphaBC and cvHsp. This was confirmed by immunofluorescence microscopy and immunoblot analysis, which showed a dramatic age-induced increase in these small heat shock proteins. Immunodecoration of other major stress proteins showed that they were not affected or less drastically changed in their expression in aged muscle. These findings indicate that the increase in muscle-specific small heat shock proteins constitutes an essential cellular response to fibre aging and might therefore be a novel therapeutic option to treat sarcopenia of old age.  相似文献   

8.
9.
Chinese hamster ovary (CHO) cell lines are the most widely used in vitro cells for research and production of recombinant proteins such as rhGH, tPA, and erythropoietin. We aimed to investigate changes in protein profiles after cryopreservation using 2D-DIGE MALDI-TOF MS and network pathway analysis. The proteome changes that occur in CHO cells between freshly prepared cells and cryopreserved cells with and without Me2SO were compared to determine the key proteins and pathways altered during recovery from cryopreservation. A total of 54 proteins were identified and successfully matched to 37 peptide mass fingerprints (PMF). 14 protein spots showed an increase while 23 showed decrease abundance in the Me2SO free group compared to the control. The proteins with increased abundance included vimentin, heat shock protein 60 kDa, mitochondrial, heat shock 70 kDa protein 9, protein disulfide-isomerase A3, voltage-dependent anion-selective channel protein 2. Those with a decrease in abundance were myotubularin, glutathione peroxidase, enolase, phospho glyceromutase, chloride intracellular channel protein 1. The main canonical functional pathway affected involved the unfolded protein response, aldosterone Signaling in Epithelial Cells, 14-3-3-mediated signaling. 2D-DIGE MALDI TOF mass spectrometry and network pathway analysis revealed the differential proteome expression of FreeStyle CHO cells after cryopreservation with and without 5% Me2SOto involve pathways related to post-translational modification, protein folding and cell death and survival (score = 56, 22 focus molecules). This study revealed, for the first time to our knowledge the proteins and their regulated pathways involved in the cryoprotective action of 5% Me2SO. The use of 5% Me2SO as a cryoprotectant maintained the CHO cell proteome in the cryopreserved cells, similar to that of fresh CHO cells.  相似文献   

10.
Induced pluripotent stem cells (iPSC) are an attractive progenitor source for the generation of in vitro blood products. However, before iPSC-derived erythroid cells can be considered for therapeutic use their similarity to adult erythroid cells must be confirmed. We have analysed the proteome of erythroid cells differentiated from the iPSC fibroblast derived line (C19) and showed they express hallmark RBC proteins, including all those of the ankyrin and 4.1R complex. We next compared the proteome of erythroid cells differentiated from three iPSC lines (C19, OCE1, OPM2) with that of adult and cord blood progenitors. Of the 1989 proteins quantified <3% differed in level by 2-fold or more between the different iPSC-derived erythroid cells. When compared to adult cells, 11% of proteins differed in level by 2-fold or more, falling to 1.9% if a 5-fold threshold was imposed to accommodate slight inter-cell line erythropoietic developmental variation. Notably, the level of >30 hallmark erythroid proteins was consistent between the iPSC lines and adult cells. In addition, a sub-population (10–15%) of iPSC erythroid cells in each of the iPSC lines completed enucleation. Aberrant expression of some cytoskeleton proteins may contribute to the failure of the majority of the cells to enucleate since we detected some alterations in cytoskeletal protein abundance. In conclusion, the proteome of erythroid cells differentiated from iPSC lines is very similar to that of normal adult erythroid cells, but further work to improve the induction of erythroid cells in existing iPSC lines or to generate novel erythroid cell lines is required before iPSC-derived red cells can be considered suitable for transfusion therapy.  相似文献   

11.
Noggin is a glycosylated-secreted protein known so far for its inhibitory effects on bone morphogenetic protein (BMP) signaling by sequestering the BMP ligand. We report here for the first time a novel mechanism by which noggin directly induces adipogenesis of mesenchymal stem cells independently of major human adipogenic signals through C/EBPδ, C/EBPα and peroxisome proliferator-activated receptor-γ. Evaluation of a possible mechanism for noggin-induced adipogenesis of mesenchymal stem cells identified the role of Pax-1 in mediating such differentiation. The relevance of elevated noggin levels in obesity was confirmed in a preclinical, immunocompetent mouse model of spontaneous obesity and in human patients with higher body mass index. These data clearly provide a novel role for noggin in inducing adipogenesis and possibly obesity and further indicates the potential of noggin as a therapeutic target to control obesity.  相似文献   

12.
Proper regulation of protein homeostasis (proteostasis) is essential to maintain cellular fitness. Proteome stress causes imbalance of the proteostasis, leading to various diseases represented by neurodegenerative diseases, cancers, and metabolic disorders. The biosensor community recently embarked on the development of proteome stress sensors to report on the integrity of proteostasis in live cells. While most of these sensors are based on metastable mutants of specific client proteins, a recent sensor takes advantage of the specific association of heat shock protein 27 with protein aggregates and exhibits a diffusive to punctate fluorescent change in cells that are subjected to stress conditions. Thus, heat shock proteins can be also used as a family of sensors to monitor proteome stress.  相似文献   

13.
Changes in essential dietary components alter global gene expression patterns in animals. We reported on a proteomics study designed to identify molecular markers of deficiencies in culture media developed for the oriental fruit fly, Bactrocera dorsalis. In that study, we found significant changes in expression of 70 proteins in adults of larvae reared on media lacking wheat germ oil (WGO), compared to media supplemented with WGO. Of these, a gene encoding an insect chitin-binding protein was expressed at about 120-fold higher levels in adult males reared on media supplemented with WGO. We inferred it may be feasible to develop the gene as a molecular marker of dietary lipid deficiency. The work was focused, however, on analysis of 11 day old adults. We have no information on expression of the chitin-binding protein, nor on any other proteins at other adult ages. In this paper we address the idea that the whole animal proteome changes dynamically with age. We reared separate groups of fruit fly larvae on media with and without WGO supplementation and analyzed protein expression in adult males and females age 0, 4, 8 and 12 days old using 2D electrophoresis. Gel densitometry revealed significant increases (by >2-fold) and decreases (by >50%) in expression levels of 29 proteins in females and 10 in males. We identified these proteins by mass spectrometry on MALDI TOF/TOF and bioinformatic analyses of the protein sequences. Two proteins, peroxiredoxin (26-fold increase) and vitellogenin 1 (15-fold increase) increased in expression in day 8 females. The key finding is that most changes in protein expression occurred in day 8 females. We infer that the fruit fly proteome changes with adult age. The natural changes in proteome with adult age is a crucial aspect of developing these and other proteins into molecular markers of lipid deficiency in fruit flies and possibly other insect species.  相似文献   

14.
Despite the increasing importance of heat shock protein 90 (Hsp90) inhibitors as chemotherapeutic agents in diseases such as cancer, their global effects on the proteome remain largely unknown. Here we use high resolution, quantitative mass spectrometry to map protein expression changes associated with the application of the Hsp90 inhibitor, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG). In depth data obtained from five replicate SILAC experiments enabled accurate quantification of about 6,000 proteins in HeLa cells. As expected, we observed activation of a heat shock response with induced expression of molecular chaperones, which refold misfolded proteins, and proteases, which degrade irreparably damaged polypeptides. Despite the broad range of known Hsp90 substrates, bioinformatics analysis revealed that particular protein classes were preferentially affected. These prominently included proteins involved in the DNA damage response, as well as protein kinases and especially tyrosine kinases. We followed up on this observation with a quantitative phosphoproteomic analysis of about 4,000 sites, which revealed that Hsp90 inhibition leads to much more down- than up-regulation of the phosphoproteome (34% down versus 6% up). This study defines the cellular response to Hsp90 inhibition at the proteome level and sheds light on the mechanisms by which it can be used to target cancer cells.  相似文献   

15.
16.
Organisms survive changes in the environment by altering their rates of metabolism, growth, and reproduction. At the same time, the system must ensure the stability and functionality of its macromolecules. Fluctuations in the environment are sensed by highly conserved stress responses and homeostatic mechanisms, and of these, the heat shock response (HSR) represents an essential response to acute and chronic proteotoxic damage. However, unlike the strategies employed to maintain the integrity of the genome, protection of the proteome must be tailored to accommodate the normal flux of nonnative proteins and the differences in protein composition between cells, and among individuals. Moreover, adult cells are likely to have significant differences in the rates of synthesis and clearance that are influenced by intrinsic errors in protein expression, genetic polymorphisms, and fluctuations in physiological and environmental conditions. Here, we will address how protein homeostasis (proteostasis) is achieved at the level of the cell and organism, and how the threshold of the stress response is set to detect and combat protein misfolding. For metazoans, the requirement for coordinated function and growth imposes additional constraints on the detection, signaling, and response to misfolding, and requires that the HSR is integrated into various aspects of organismal physiology, such as lifespan. This is achieved by hierarchical regulation of heat shock factor 1 (HSF1) by the metabolic state of the cell and centralized neuronal control that could allow optimal resource allocation between cells and tissues. We will examine how protein folding quality control mechanisms in individual cells may be integrated into a multicellular level of control, and further, even custom-designed to support individual variability and impose additional constraints on evolutionary adaptation.  相似文献   

17.
Adipose tissue contains a heterogeneous population of mature adipocytes, endothelial cells, immune cells, pericytes, and preadipocytic stromal/stem cells. To date, a majority of proteomic analyses have focused on intact adipose tissue or isolated adipose stromal/stem cells in vitro. In this study, human subcutaneous adipose tissue from multiple depots (arm and abdomen) obtained from female donors was separated into populations of stromal vascular fraction cells and mature adipocytes. Out of 960 features detected by 2-D gel electrophoresis, a total of 200 features displayed a 2-fold up- or down-regulation relative to each cell population. The protein identity of 136 features was determined. Immunoblot analyses comparing SVF relative to adipocytes confirmed that carbonic anhydrase II was up-regulated in both adipose depots while catalase was up-regulated in the arm only. Bioinformatic analyses of the data set determined that cytoskeletal, glycogenic, glycolytic, lipid metabolic, and oxidative stress related pathways were highly represented as differentially regulated between the mature adipocytes and stromal vascular fraction cells. These findings extend previous reports in the literature with respect to the adipose tissue proteome and the consequences of adipogenesis. The proteins identified may have value as biomarkers for monitoring the physiology and pathology of cell populations within subcutaneous adipose depots.  相似文献   

18.
The period circadian regulator 3 (PER3) has been reported to play a negative role in human immortalized bone marrow-derived Scp-1 cells (iBMSCs) and patient adipose-derived stromal cells (PASCs) or a negative/positive role in mice adipogenesis. However, human PER3 (hPER3) was identified as a positive regulator of human adipose tissue-derived stromal cells (hADSCs) adipogenesis in this study. Silencing or overexpression of hPER3 in hADSCs inhibited and promoted adipogenesis in vitro. In vivo, the overexpression of hPER3 increased high-fat diet-induced inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT) forms, increasing systemic glucose intolerance and insulin resistance. Molecularly, hPER3 does not interact with hPPARγ, but represses Notch1 signaling pathway to enhance adipogenesis by interacting with hHSP90AA1, which is able to combine with the promoter of hNotch1 and inactivate its expression. Thus, our study revealed hPER3 as a critical positive regulator of hADSCs adipogenesis, which was different from the other types of cells, providing a critical role of it in treating obesity.Subject terms: Molecular biology, Obesity  相似文献   

19.
Pluripotency is a unique property of stem cells that allows them to differentiate into all types of adult cells or maintain the self-renewal property. PluriPred predicts whether a protein is involved in pluripotency from primary protein sequence using manually curated pluripotent proteins as training datasets. Machine learning techniques (MLTs) such as Support Vector Machine (SVM), Naïve Base (NB), Random Forest (RF), and sequence alignment technique BLAST were used in our study. The combination of SVM and PSI-BLAST was our proposed best model, which obtained a sensitivity of 77.40%, specificity of 79.72%, accuracy of 79.2%, and area under the ROC curve was 0.82 using 5-fold cross-validation. Furthermore, PluriPred gives the confidence of the prediction from training dataset’s SVM score distribution and p-value from BLAST. We validated our proposed model with the other existing high-throughput studies using blind/independent datasets. Using PluriPred, 233 novel core and 323 novel extended core pluripotent proteins from mouse proteome, and 167 novel core and 385 extended core pluripotent proteins from human proteome, were predicted with high confidence. The Web application of PluriPred is available from bicresources.jcbose.ac.in/ssaha4/pluripred/. Many pluripotent genes/proteins take part in protein-protein networks associated with stem cell, cancer, and developmental biology, and we believe that PluriPred will help in these research.  相似文献   

20.
Naturally occurring reoviruses are live replication-proficient viruses specifically infecting human cancer cells while sparing the normal counterparts. Stem cells can be highly susceptible to viral infection due to their innate high proliferation potential and other active signaling pathways of cells that might be involved in viral tropism. In the previous study, we showed that reoviruses could adversely affect murine embryonic stem cells’ integrity in vitro and in vivo. Oncolytic viruses, delivered systemically face many hurdles that also impede their localization and infection of, metastatic tumors, due to a variety of immune and physical barriers. To overcome such hurdles to systemic delivery, several studies supported the idea that certain types of cells, including mesenchymal stem cells, might play a role as cell carriers for oncolytic viruses. Thus, it would be interesting to examine whether human adult stem cells such as human adipose-derived mesenchymal stem cells could be saved by the reoviral challenge. In this study, we report that biological activities such as proliferation and multipotency of human adipose-derived stem cells are not affected by wild-type reovirus challenge as evidenced by survival, osteogenic and adipogenic differentiation potential assays following treatment with reoviruses. Therefore, unlike murine embryonic stem cells, our study strongly suggests that human adipose-derived adult stem cells could be spared in vivo during wild-type reoviral anti-cancer therapeutics in a clinical setting. Furthermore, the results support the possible clinical use of human adipose-derived stem cells as an effective cell carrier of oncolytic reovirus to maximize their tumor tropism and anti-tumor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号