首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Imidazole and its simple derivatives exerted an positive inotropic action on isolated guinea pig heart auricles. The order activity was 2-Etlm greater than greater than 2-MeIm greater than N-MeIm greater than Im. The action of Im on heart auricles was partially blocked by mepyramine, but not by burmamide. Im and 2-MeIm increased EPP's amplitude and produced a generation of full spike potentials in fatigued nerve-muscle preparation. Both Im acts in absence of calcium from Ringer's solution. Possibility of the Im action as free calcium ions regulator is discussed.  相似文献   

9.
The effect of somatostatin (GH-RIH) on cholecystokinin octapeptide (OP-CCK) or acetylcholine (ACh) induced contraction of the guinea pig gallbladder was evaluated in vitro. GH-RIH failed to inhibit the muscle contraction induced by OP-CCK or ACh. To correlate with the in vitro results, the effect of GH-RIH on OP-CCK induced contraction of the gallbladder was evaluated in the guinea pig in vivo. GH-RIH did not affect the OP-CCK induced contraction of the gallbladder. Our results suggest that GH-RIH does not have direct inhibitory effect on the contraction of the guinea pig gallbladder induced by OP-CCK or ACh.  相似文献   

10.
D B Hoover 《Peptides》1989,10(2):343-347
The pharmacological effects of guinea pig vasoactive intestinal peptide (VIP) were studied in isolated perfused guinea pig hearts. Bolus injections of VIP produced a dose-dependent tachycardia that was not affected by atenolol. A decrease in amplitude of ventricular contractions occurred in response to all doses of VIP. This response was preceded by a small increase in amplitude in 3 of 6 hearts at the highest dose. VIP produced a decrease in perfusion pressure which was prominent after coronary tone was elevated with [Arg8]-vasopressin. The present findings support speculation that VIP may have a role in the regulation of heart rate and coronary blood flow.  相似文献   

11.
Calcitonin (CT) is a 32 amino acidic polypeptide hormone which has been found in almost all species and whose effects are mainly concerned with calcium and phosphorous homeostasis. Three preparations are employed for therapeutic uses: salmon (sCT), porcine (pCT) and human CT (hCT). The sCT is the most powerful one and in human volunteers a strong relaxing effect has been shown on gallbladder (GB) basal volume and emptying in response to a meal, intraduodenal instillation of a liquid meal and i.v. cholecystokinin (CCK) infusion. Our study was aimed at investigating if a direct sCT effect could be demonstrated on smooth muscle strips from guinea pig GBs "in vitro" (organ bath). Isometric contractions were measured in response to maximal doses of acetylcholine (ACh: 10(-4) M), KCl (80 mM) and cholecystokinin octapeptide (CCK-OP: 10(-6) M), in absence and in presence of four doses of sCT (1 x 10(-9), 1 x 10(-8), 1 x 10(-7) and 1 x 10(-6) M). sCT did not affect the initial strip basal tone. ACh, CCK-OP and KCl caused, as expected, a powerful contraction of the strips, but no effect was shown when each of the sCT doses was administered before ACh (1.28+ 0.69 SEM without sCT vs 1.28g+ 0.69 with sCT; n = 6) and CCK-OP (1.46g+ 0.19 without sCT vs 1.46g+ 0.19 with sCT; n = 8) or 5 min after the induced KCl contraction. On the basis of these preliminary results, we conclude that no evidence of a direct sCT effect was found on guinea pig GBs when considering either basal smooth muscle tone or isometric contraction in response to ACh, KCl and CCK-OP. Further studies are therefore required to clarify the influence of CT on GB dynamics in vivo and to elucidate its the physiological significance.  相似文献   

12.
13.
Species differences have been observed in the effect of cholecystokinin octapeptide (CCK OP) on the canine and guinea pig gallbladder smooth muscle motility. 1. CCK OP was more potent stimulant in canine than in guinea pig gallbladder smooth muscles. Its pD2 values were 10 and 9.2, respectively. 2. The acetylcholine (10(-4) M)-induced maximum contractions in canine gallbladder muscle strips were by 50% lower as compared to the CCK OP (10(-8) M) maximum responses while in guinea pig gallbladder muscle strips the acetylcholine (ACh) maximum responses were by 20% lower than the CCK OP maximum responses. 3. CCK OP increased [3H]ACh release by 27% in canine gallbladder and by 40% in guinea pig gallbladder. 4. Somatostatin (SOM) had not any direct myogenic effect in guinea pig and canine gallbladder but it decreased [3H]ACh release from gallbladder intrinsic cholinergic neurons.  相似文献   

14.
15.
Histamine is an inflammatory mediator present in mast cells, which are abundant in the wall of the gallbladder. We examined the electrical properties of gallbladder smooth muscle and nerve associated with histamine-induced changes in gallbladder tone. Recordings were made from gallbladder smooth muscle and neurons, and responses to histamine and receptor subtype-specific compounds were tested. Histamine application to intact smooth muscle produced a concentration-dependent membrane depolarization and increased excitability. In the presence of the H(2) antagonist ranitidine, the response to histamine was potentiated. Activation of H(2) receptors caused membrane hyperpolarization and elimination of spontaneous action potentials. The H(2) response was attenuated by the ATP-sensitive K(+) (K(ATP)) channel blocker glibenclamide in intact and isolated smooth muscle. Histamine had no effect on the resting membrane potential or excitability of gallbladder neurons. Furthermore, neither histamine nor the H(3) agonist R-alpha-methylhistamine altered the amplitude of the fast excitatory postsynaptic potential in gallbladder ganglia. The mast cell degranulator compound 48/80 caused a smooth muscle depolarization that was inhibited by the H(1) antagonist mepyramine, indicating that histamine released from mast cells can activate gallbladder smooth muscle. In conclusion, histamine released from mast cells can act on gallbladder smooth muscle, but not in ganglia. The depolarization and associated contraction of gallbladder smooth muscle represent the net effect of activation of both H(1) (excitatory) and H(2) (inhibitory) receptors, with the H(2) receptor-mediated response involving the activation of K(ATP) channels.  相似文献   

16.
Hydrophobic bile acids impair gallbladder emptying in vivo and inhibit gallbladder muscle contraction in response to CCK-8 in vitro. This study was aimed at determining the mechanisms of muscle cell dysfunction caused by bile acids in guinea pig gallbladders. Muscle cells were obtained by enzymatic digestion. Taurochenodeoxycholic acid (TCDC), a hydrophobic bile acid, caused a contraction of up to 15% and blocked CCK-induced contraction. Indomethacin abolished the TCDC-induced contraction. Hydrophilic bile acid tauroursodeoxycholic acid (TUDC) had no effect on muscle contraction but prevented the TCDC-induced contraction and its inhibition on CCK-induced contraction. Pretreatment with NADPH oxidase inhibitor PH2I, xanthine oxidase inhibitor allopurinol, and free-radical scavenger catalase also prevented TCDC-induced contraction and its inhibition of the CCK-induced contraction. TCDC caused H2O2 production, lipid peroxidation, and increased PGE2 synthesis and activities of catalase and SOD. These changes were significantly inhibited by pretreatment of PH2I or allopurinol. Inhibitors of cytosolic phospholipase A2 (cPLA2), protein kinase C (PKC), and mitogen-activating protein kinase (MAPK) also blocked the TCDC-induced contraction. It is concluded that hydrophobic bile acids cause muscle cell dysfunction by stimulating the formation of H2O2 via activation of NADPH and xanthine oxidase. H2O2 causes lipid peroxidation and activates cPLA2 to increase PGE2 production, which, in turn, stimulates the synthesis of free-radical scavengers through the PKC-MAPK pathway.  相似文献   

17.
18.
The metabolic fates and modes of excretion of diethylstilboestrol mono[35S]sulphate and diethylstilboestrol di[35S]sulphate were studied in the guinea pig. Comparative studies were also made with [G-3H]diethylstilboestrol and phenolphthalein di[35S]sulphate. Diethylstiboesterol di[35S]sulphate was extensively eliminated in the bile unchanged. After administration of diethylstilboestrol mono[35S]sulphate, extensive biliary elimination of radioactivity was also recorded. Radioactive components were identified as diethylstilboestrol disulphate, diethylstilboestrol monosulphate monoglucuronide and unchanged diethylstilboestrol monosulphate. When [G-3H]diethylstilboestrol was administered, 3H-labelled diethylstilboestrol monoglucuronide, diethylstilboestrol monosulphate monoglucuronide and diethylstilboestrol disulphate appeared in the bile. Phenolphthalein di[35S]sulphate was excreted unchanged in bile. These findings are discussed in relation to studies carried out in the rat [Barford, Olavesen, Curtis & Powell (1977) Biochem. J. 164, 423--430] and species differences are related to differences in enzyme activities in rat and guinea-pig liver.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号