首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic miscoding lesions can cause inaccuracies during the interpretation of ancient DNA sequence data. In this study, genetic miscoding lesions were identified and assessed by cloning and direct sequencing of degraded, amplified mitochondrial DNA (mtDNA) extracted from human remains. Forty-two individuals, comprising nine collections from five geographic locations, were analyzed for the presence of DNA damage that can affect the generation of a correct mtDNA profile. In agreement with previous studies, high levels (56.5% of all damage sites) of proposed hydrolytic damage products were observed. Among these, type 2 transitions (cytosine → thymine or guanine → adenine), which are highly indicative of hydrolytic deamination, were observed in 50% of all misincorporations that occurred. In addition to hydrolytic damage products, oxidative damage products were also observed in this study and were responsible for approximately 43.5% of all misincorporations. This level of misincorporation is in contrast to previous studies characterizing miscoding lesions from the analysis of bone and teeth, where few to no oxidative damage products were observed. Of all the oxidative damage products found in this study, type 2 transversions (cytosine → adenine/guanine → thymine or cytosine → guanine/guanine → cytosine), which are commonly formed through the generation of 8-hydroxyguanine, accounted for 30.3% of all genetic miscoding lesions observed. This study identifies the previously unreported presence of oxidative DNA damage and proposes that damage to degraded DNA templates is highly specific in type, correlating with the geographic location and the taphonomic conditions of the depositional environment from which the remains are recovered. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The spectrum of postmortem damage in mitochondrial DNA was analyzed in a large data set of cloned sequences from ancient human specimens. The most common forms of damage observed are two complementary groups of transitions, termed "type 1" (adenine-->guanine/thymine-->cytosine) and "type 2" (cytosine-->thymine/guanine-->adenine). Single-primer extension PCR and enzymatic digestion with uracil-N-glycosylase confirm that each of these groups of transitions result from a single event, the deamination of adenine to hypoxanthine, and cytosine to uracil, respectively. The predominant form of transition-manifested damage varies by sample, though a marked bias toward type 2 is observed with increasing amounts of damage. The two transition types can be used to identify the original strand, light (L) or heavy (H), on which the initial damage event occurred, and this can increase the number of detected jumping-PCR artifacts by up to 80%. No bias toward H-strand-specific damage events is noted within the hypervariable 1 region of human mitochondria, suggesting the rapid postmortem degradation of the secondary displacement (D-loop) H strand. The data also indicate that, as damage increases within a sample, fewer H strands retain the ability to act as templates for enzymatic amplification. Last, a significant correlation between archaeological site and sample-specific level of DNA damage was detected.  相似文献   

3.

Background

The degradation of DNA represents one of the main issues in the genetic analysis of archeological specimens. In the recent years, a particular kind of post-mortem DNA modification giving rise to nucleotide misincorporation (“miscoding lesions”) has been the object of extensive investigations.

Methodology/Principal Findings

To improve our knowledge regarding the nature and incidence of ancient DNA nucleotide misincorporations, we have utilized 6,859 (629,975 bp) mitochondrial (mt) DNA sequences obtained from the 5,350–5,100-years-old, freeze-desiccated human mummy popularly known as the Tyrolean Iceman or Ötzi. To generate the sequences, we have applied a mixed PCR/pyrosequencing procedure allowing one to obtain a particularly high sequence coverage. As a control, we have produced further 8,982 (805,155 bp) mtDNA sequences from a contemporary specimen using the same system and starting from the same template copy number of the ancient sample. From the analysis of the nucleotide misincorporation rate in ancient, modern, and putative contaminant sequences, we observed that the rate of misincorporation is significantly lower in modern and putative contaminant sequence datasets than in ancient sequences. In contrast, type 2 transitions represent the vast majority (85%) of the observed nucleotide misincorporations in ancient sequences.

Conclusions/Significance

This study provides a further contribution to the knowledge of nucleotide misincorporation patterns in DNA sequences obtained from freeze-preserved archeological specimens. In the Iceman system, ancient sequences can be clearly distinguished from contaminants on the basis of nucleotide misincorporation rates. This observation confirms a previous identification of the ancient mummy sequences made on a purely phylogenetical basis. The present investigation provides further indication that the majority of ancient DNA damage is reflected by type 2 (cytosine→thymine/guanine→adenine) transitions and that type 1 transitions are essentially PCR artifacts.  相似文献   

4.
Although ancient DNA (aDNA) miscoding lesions have been studied since the earliest days of the field, their nature remains a source of debate. A variety of conflicting hypotheses exist about which miscoding lesions constitute true aDNA damage as opposed to PCR polymerase amplification error. Furthermore, considerable disagreement and speculation exists on which specific damage events underlie observed miscoding lesions. The root of the problem is that it has previously been difficult to assemble sufficient data to test the hypotheses, and near-impossible to accurately determine the specific strand of origin of observed damage events. With the advent of emulsion-based clonal amplification (emPCR) and the sequencing-by-synthesis technology this has changed. In this paper we demonstrate how data produced on the Roche GS20 genome sequencer can determine miscoding lesion strands of origin, and subsequently be interpreted to enable characterization of the aDNA damage behind the observed phenotypes. Through comparative analyses on 390 965 bp of modern chloroplast and 131 474 bp of ancient woolly mammoth GS20 sequence data we conclusively demonstrate that in this sample at least, a permafrost preserved specimen, Type 2 (cytosine→thymine/guanine→adenine) miscoding lesions represent the overwhelming majority of damage-derived miscoding lesions. Additionally, we show that an as yet unidentified guanine→adenine analogue modification, not the conventionally argued cytosine→uracil deamination, underpins a significant proportion of Type 2 damage. How widespread these implications are for aDNA will become apparent as future studies analyse data recovered from a wider range of substrates.  相似文献   

5.
One of the key problems in the study of ancient DNA is that of authenticating sequences obtained from PCR amplifications of highly degraded samples. Contamination of ancient samples and postmortem damage to endogenous DNA templates are the major obstacles facing researchers in this task. In particular, the authentication of sequences obtained from ancient human remains is thought by many to be rather challenging. We propose a novel approach, based on the c statistic, that can be employed to help identify the sequence motif of an endogenous template, based on a sample of sequences that reflect the nucleotide composition of individual template molecules obtained from ancient tissues (such as cloned products from a PCR amplification). The c statistic exploits as information the most common form of postmortem damage observed among clone sequences in ancient DNA studies, namely, lesion-induced substitutions caused by cytosine deamination events. Analyses of simulated sets of templates with miscoding lesions and real sets of clone sequences from the literature indicate that the c-based approach is highly effective in identifying endogenous sequence motifs, even when they are not present among the sampled clones. The proposed approach is likely to be of general use to researchers working with DNA from ancient tissues, particularly from human remains, where authentication of results has been most challenging. [Reviewing Editor: Dr. Magnus Nordborg]  相似文献   

6.
Plasmid pKM101 enhances the frequency of spontaneous and ultraviolet light-induced mutations in Escherichia coli and protects the cells against the lethal effects of ultraviolet irradiation. By analyzing reversion patterns of defined trpA alleles, we showed that pKM101 caused all types of spontaneous base-pair substitution mutations with the possible exception of guanine . cytosine leads to adenine. thymine transitions. Neither insertion nor deletion frameshift mutations were enhanced. Transversions were more strongly enhanced than transitions, and adenine . thymine base pairs appeared more susceptible to pKM101 mutator activity than guanine . cytosine base pairs. In addition, there were effects from neighboring base pairs and genetic background that influenced the mutator activity of pKM101.  相似文献   

7.
A method is described for determination of the base composition (as guanine+cytosine or adenine+thymine content) of DNA by accurate measurement of the adenine/guanine ratio. The DNA is hydrolysed with 0.03n-hydrochloric acid for 40min. to release the purines. The hydrolysate is subjected to ion-exchange chromatography on Zeo-Karb 225. Apurinic acids are eluted with 0.03n-hydrochloric acid and then guanine and adenine are eluted separately with 2n-hydrochloric acid. Guanine and adenine are each collected as a single fraction, and the amount of base in each case is determined by measuring the volume and the extinction at suitable wavelengths. For use in the calculations, millimolar extinction coefficients in 2n-hydrochloric acid of 12.09 for adenine at 262mmu, and 10.77 for guanine at 248mmu, were determined with authentic samples of bases. The method gives extremely reproducible results: from 12 determinations with calf thymus DNA the adenine/guanine molar ratio had a standard deviation of 0.011; this corresponds to a standard deviation in guanine+cytosine content of 0.2% guanine+cytosine.  相似文献   

8.
Larson ED  Iams K  Drummond JT 《DNA Repair》2003,2(11):1199-1210
Genomic DNA and its precursors are susceptible to oxidation during aerobic cellular metabolism, and at least five distinct repair activities target a single common lesion, 7,8-dihydro-8-oxoguanine (8-oxoG). The human mismatch repair (MMR) pathway, which has been implicated in an apoptotic response to covalent DNA damage, is likely to encounter 8-oxoG in both the parental and daughter strand during replication. Here, we show that lesions containing 8-oxoG paired with adenine or cytosine, which are most likely to arise during replication, are not efficiently processed by the mismatch repair system. Lesions containing 8-oxoG paired with thymine or guanine, which are unlikely to arise, are excised in an MSH2/MSH6-dependent manner as effectively as the corresponding mismatches when placed in a context that reflects the daughter strand during replication. Using a newly developed assay based on methylation sensitivity, we characterized strand-excision events opposite 8-oxoG situated to reflect placement in the parental strand. Lesions that efficiently trigger strand excision and resynthesis (8-oxoG paired with thymine or guanine) result in adenine or cytosine insertion opposite 8-oxoG. These latter pairings are poor substrates for further action by mismatch repair, but precursors for alternative pathways with non-mutagenic outcomes. We suggest that the lesions most likely to be encountered by the human mismatch repair pathway during replication, 8-oxoG.A or 8-oxoG.C, are likely to escape processing in either strand by this system. Taken together, these data suggest that the human mismatch repair pathway is not a major contributor to removal of misincorporated 8-oxoG, nor is it likely to trigger repeated attempts at lesion processing.  相似文献   

9.
The nucleic acids of some insect viruses   总被引:10,自引:0,他引:10  
Purine and pyrimidine bases have been estimated from the desoxyribonucleic acids of eleven insect viruses. Their proportions vary in the different species in a balanced way so that the molar ratios adenine:thymine and guanine:cytosine are constant and close to unity, whereas adenine + thymine:guanine + cytosine ranges from 0.71 to 1.87. This ratio is identical for some biologically dissimilar viruses, and no general parallelism is evident between DNA composition and biological relationship. Two different viruses from one host have distinct DNA's.  相似文献   

10.
Translesion synthesis (TLS) with specialized DNA polymerases allows dealing with a base lesion on the template strand during DNA replication; a base is inserted opposite the lesion, correctly or incorrectly, depending on the lesion, the involved DNA polymerase(s) and the sequence context. The major oxidized DNA base 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) is highly mutagenic due to its ability to pair with either cytosine or adenine during DNA synthesis, depending on its conformation and involved DNA polymerases. To measure the correct or mutagenic outcome of lesion bypass, an original quantitative pyrosequencing method was developed and analytically validated. The method was applied to the study of DNA synthesis fidelity through an 8-oxodG or an undamaged guanine. After an in vitro primer-extension through 8-oxodG in the presence of the four deoxynucleotides triphosphates and a total nuclear protein extract, obtained from normal human intestinal epithelial cells (FHs 74 Int cell line), the reaction products were amplified by polymerase chain reaction and analyzed by pyrosequencing to measure nucleotides inserted opposite the lesion. The 8-oxodG bypass fidelity of FHs 74 Int cells nuclear extract is about 85.3%. We calculated within-day and total precisions for both 8-oxodG (2.8% and 2.8%, respectively) and undamaged templates (1.0% and 1.1%, respectively). We also demonstrated that only cytosine is incorporated opposite a normal guanine and that both cytosine and adenine can be incorporated opposite an 8-oxodG lesion. The proposed method is straightforward, fast, reproducible and easily adaptable to other sequences and lesions. It thus has a wide range of applications in the biological field, notably to elucidate TLS mechanisms and modulators.  相似文献   

11.
Base pairs are propeller-twisted, buckled and staggered in DNA fragment crystals. These deformations were analyzed with isolated Watson-Crick base pairs using empirical potentials and buckle was found to almost linearly correlate with propeller. Interestingly, the thymine.adenine pair favours negative buckling for propellers mostly observed in DNA crystals while positive buckling is preferred by the cytosine.guanine pair. The propeller also induces opposite staggers in the adenine.thymine and guanine.cytosine base pairs.  相似文献   

12.
Cyclobutane pyrimidine dimers were quantified at the sequence level after irradiation with solar ultraviolet (UVB) and nonsolar ultraviolet (UVC) light sources. The yield of photoproducts at specific sites was dependent on the nucleotide composition in and around the potential lesion as well as on the wavelength of ultraviolet light used to induce the damage. Induction was greater in the presence of 5' flanking pyrimidines than purines; 5' guanine inhibited induction more than adenine. UVB irradiation increased the induction of cyclobutane dimers containing cytosine relative to thymine homodimers. At the single UVC and UVB fluences used, the ratio of thymine homodimers (T mean value of T) to dimers containing cytosine (C mean value of T, T mean value of C, C mean value of C) was greater after UVC compared to UVB irradiation.  相似文献   

13.
An Q  Robins P  Lindahl T  Barnes DE 《The EMBO journal》2005,24(12):2205-2213
The most common genetic change in aerobic organisms is a C:G to T:A mutation. C --> T transitions can arise through spontaneous hydrolytic deamination of cytosine to give a miscoding uracil residue. This is also a frequent DNA lesion induced by oxidative damage, through exposure to agents such as ionizing radiation, or from endogenous sources that are implicated in the aetiology of degenerative diseases, ageing and cancer. The Ung and Smug1 enzymes excise uracil from DNA to effect repair in mammalian cells, and gene-targeted Ung(-/-) mice exhibit a moderate increase in genome-wide spontaneous mutagenesis. Here, we report that stable siRNA-mediated silencing of Smug1 in mouse embryo fibroblasts also generates a mutator phenotype. However, an additive 10-fold increase in spontaneous C:G to T:A transitions in cells deficient in both Smug1 and Ung demonstrates that these enzymes have distinct and nonredundant roles in suppressing C --> T mutability at non-CpG sites. Such cells are also hypersensitive to ionizing radiation, and reveal a role of Smug1 in the repair of lesions generated by oxidation of cytosine.  相似文献   

14.
In this paper we show that a 211-base pair segment of CEN3 DNA is sufficient to confer wild-type centromere function in the yeast Saccharomyces cerevisiae. We used site-directed mutagenesis of the 211-base pair fragment to examine the sequence-specific functional requirements of a conserved 11-base pair segment of centromere DNA, element III (5'-TGATTTATCCGAA-3'). Element III is the most highly conserved of the centromeric DNA sequences, differing by only a single adenine X thymine base pair among the four centromere DNAs sequenced thus far. All of the element III sequences contain specific cytosine X guanine base pairs, including a 5'-CCG-3' arrangement, which we targeted for single cytosine-to-thymine mutations by using sodium bisulfite. The effects of element III mutations on plasmid and chromosome segregation were determined by mitotic stability assays. Conversion of CCG to CTG completely abolished centromere function both in plasmids and in chromosome III, whereas conversion of CCG to TCG decreased plasmid and chromosome stability moderately. The other two guanine X cytosine base pairs in element III could be independently converted to adenine X thymine base pairs without affecting plasmid or chromosome stability. We concluded that while some specific nucleotides within the conserved element III sequence are essential for proper centromere function, other conserved nucleotides can be changed.  相似文献   

15.
Mukba  S. A.  Vlasov  P. K.  Kolosov  P. M.  Shuvalova  E. Y.  Egorova  T. V.  Alkalaeva  E. Z. 《Molecular Biology》2020,54(4):475-484
Molecular Biology - The genetic code is considered to use five nucleic bases (adenine, guanine, cytosine, thymine and uracil), which form two pairs for encoding information in DNA and two pairs for...  相似文献   

16.
The repair enzymes thymine DNA glycosylase (TDG) and methyl-CpG-binding protein 4 (MBD4) remove thymines from T:G mismatches resulting from deamination of 5-methylcytosine. Thymine glycol, a common DNA lesion produced by oxidative stress, can arise from oxidation of thymine or from oxidative deamination of 5-methylcytosine, and is then present opposite adenine or opposite guanine, respectively. Here we have used oligonucleotides with thymine glycol incorporated into different sequence contexts and paired with adenine or guanine. We show that TDG and MBD4 can remove thymine glycol when present opposite guanine but not when paired with adenine. The efficiency of these enzymes for removal of thymine glycol is about half of that for removal of thymine in the same sequence context. The two proteins may have evolved to act specifically on DNA mismatches produced by deamination and by oxidation-coupled deamination of 5-methylcytosine. This repair pathway contributes to mutation avoidance at methylated CpG dinucleotides.  相似文献   

17.
The interaction between the nucleic acid bases and solvent molecules has an important effect in various biochemical processes. We have calculated total energy and free energy of the solvation of DNA bases in water by Monte Carlo simulation. Adenine, guanine, cytosine, and thymine were first optimized in the gas phase and then placed in a cubic box of water. We have used the TIP3 model for water and OPLS for the nucleic acid bases. The canonical (T, V, N) ensemble at 25°C and Metropolis sampling technique have been used. Good agreement with other available computational data was obtained. Radial distribution functions of water around each site of adenine, guanine, cytosine, and thymine have been computed and the results have shown the ability of the sites for hydrogen bonding and other interactions. The computations have shown that guanine has the highest value of solvation free energy and N7 and N6 in adenine and guanine, N3 in cytosine, and N3 and O4 in thymine have the largest radial distribution function. Monte Carlo simulation has also been performed using the CHARMM program under the same conditions, and the results of two procedures are compared.  相似文献   

18.
The interaction between the nucleic acid bases and solvent molecules has an important effect in various biochemical processes. We have calculated total energy and free energy of the solvation of DNA bases in water by Monte Carlo simulation. Adenine, guanine, cytosine, and thymine were first optimized in the gas phase and then placed in a cubic box of water. We have used the TIP3 model for water and OPLS for the nucleic acid bases. The canonical (T, V, N) ensemble at 25 degrees C and Metropolis sampling technique have been used. Good agreement with other available computational data was obtained. Radial distribution functions of water around each site of adenine, guanine, cytosine, and thymine have been computed and the results have shown the ability of the sites for hydrogen bonding and other interactions. The computations have shown that guanine has the highest value of solvation free energy and N7 and N6 in adenine and guanine, N3 in cytosine, and N3 and O4 in thymine have the largest radial distribution function. Monte Carlo simulation has also been performed using the CHARMM program under the same conditions, and the results of two procedures are compared.  相似文献   

19.
DNA was treated with bleomycin in the presence of Fe2+ and 2-mercaptoethanol under conditions where only a few percent of the bases were released. Release of all four bases was a linear function of bleomycin concentration, but the amount of thymine released was twice that of cytosine, 7 times that of adenine, and twelve times that of guanine. Unidentified minor products of thymine, of cytosine and of a purine were also released. Bromouracil did not sensitize DNA to bleomycin-induced breakage, and was released at the same rate as thymine.  相似文献   

20.
Human 8-oxoguanine-DNA glycosylase OGG1 is an enzyme that removes abundant oxidative lesion 8-oxoguanine (8-oxoG) from DNA. Excision of 8-oxoG by OGG1 is inhibited by the abasic DNA reaction product and is stimulated by AP endonuclease APEX1. Besides 8-oxoG, OGG1 shows activity towards several other base lesions. Here we report that APEX1 efficiently stimulates OGG1 on good substrates (8-oxoadenine, 8-oxoinosine, or 6-methoxy-8-oxoguanine opposite to cytosine) but the stimulation is low or absent with poor OGG1 substrates (8-oxoadenine or 8-oxoinosine opposite to thymine; 8-oxoG or 8-aminoguanine opposite to adenine; 8-oxonebularine, 8-metoxyguanine, inosine or guanine opposite to cytosine). APEX1 significantly improves the ability of OGG1 to excise 8-aminoguanine from its naturally occurring pair with cytosine, making it possible that OGG1 repairs this lesion. Overall, APEX1 serves to improve specificity of OGG1 for its biologically relevant substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号