首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The products of Hox-4 genes appear to encode position in developing vertebrate limbs. In chick embryos, a number of different signalling regions when grafted to wing buds lead to duplicated digit patterns. We grafted tissue from the equivalent regions in mouse embryos to chick wing buds and assayed expression of Hox-4 genes in both the mouse cells in the grafts and in the chick cells in the responding limb bud using species specific probes. Tissue from the mouse limb polarizing region and anterior primitive streak respecify anterior chick limb bud cells to give posterior structures and lead to activation of all the genes in the complex. Mouse neural tube and genital tubercle grafts, which give much less extensive changes in pattern, do not activate 5'-located Hox-4 genes. Analysis of expression of Hox-4 genes in mouse cells in the grafted signalling regions reveals no relationship between expression of these genes and strength of their signalling activity. Endogenous signals in the chick limb bud activate Hox-4 genes in grafts of mouse anterior limb cells when placed posteriorly and in grafts of mouse anterior primitive streak tissue. The activation of the same gene network by different signalling regions points to a similarity in patterning mechanisms along the axes of the vertebrate body.  相似文献   

3.
4.
5.
6.
Limb development has long been a model system for studying vertebrate pattern formation. The advent of molecular biology has allowed the identification of some of the key genes that regulate limb morphogenesis. One important class of such genes are the homeobox-containing, or Hox genes. Understanding of the roles these genes play in development additionally provides insights into the evolution of limb pattern. Hox gene expression patterns divide the embryonic limb bud into five sectors along the anterior/posterior axis. The expression of specific Hox genes in each domain specifies the developmental fate of that region. Because there are only five distinct Hox-encoded domains across the limb bud there is a developmental constraint prohibiting the evolution of more than five different types of digits. The expression patterns of Hox genes in modern embryonic limb buds also gives clues to the shape of the ancestral fin field from which the limb evolved, hence elucidating the evolution of the tetrapod limb.  相似文献   

7.
8.
9.
10.
Homeoproteins have been shown to be expressed in a position-specific manner along the anterior-posterior axis in the developing chick feather bud, as seen also in the developing limb bud. These facts raise the possibility that there may be common mechanistic features in the establishment of the anterior-posterior polarity between both organs. In order to investigate this possibility, feather bud tissues were transplanted into the anterior region of limb buds to determine whether feather bud tissues possess properties such as the zone of polarizing activity of the limb bud. The manipulated limb bud formed a mirror image duplication of the skeletal elements, mainly (2)2234 digit pattern or sometimes 3(2)234. Both the anterior and posterior halves of feather bud tissue exhibited almost equal activity in inducing ectopic skeletal elements. Hox d-12 and Hox a-13 were expressed coordinately around the transplanted site of the operated limb bud. This secondary axis-inducing activity of the feather bud was enhanced when grafts were pretreated with trypsin. In contrast, the presumptive feather bud tissue and inter-feather bud tissue did not induce a secondary axis of the limb bud. These results suggest that the feather bud contains a region that exerts polarizing activity and that this region may play key roles in the formation of the anterior-posterior and, if it exists, proximal-distal axis of the feather bud, possibly via the regulation of region specific expression of Hox genes.  相似文献   

11.
During early stages of normal chick limb development, the homeobox-containing (HOX) gene GHox-4.6 is expressed throughout the posterior mesoderm of the wing bud from which most of the skeletal elements including the digits will develop, whereas GHox-8 is expressed in the anterior limb bud mesoderm which will not give rise to skeletal elements. In the present study, we have examined the expression of GHox-4.6 and GHox-8 in the wing buds of two polydactylous mutant chick embryos, diplopodia-5 and talpid2, from which supernumerary digits develop from anterior limb mesoderm, and have also examined the expression of these genes in response to polarizing zone grafts and retinoic acid-coated bead implants which induce the formation of supernumerary digits from anterior limb mesoderm. We have found that the formation of supernumerary digits from the anterior mesoderm in mutant and experimentally induced polydactylous limb buds is preceded by the ectopic expression of GHox-4.6 in the anterior mesoderm and the coincident suppression of GHox-8 expression in the anterior mesoderm. These observations suggest that the anterior mesoderm of the polydactylous limb buds is "posteriorized" and support the suggestion that GHox-8 and GHox-4.6, respectively, are involved in specifying the anterior non-skeletal and posterior digit-forming regions of the limb bud. Although the anterior mesodermal domain of GHox-8 expression is severely impaired in the mutant and experimentally induced polydactylous limb buds, this gene is expressed by the prolonged, thickened apical ectodermal ridges of the polydactylous limb buds that extend along the distal anterior as well as the distal posterior mesoderm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
While some of the signaling molecules that govern establishment of the limb axis have been characterized, little is known about the downstream effector genes that interpret these signals. In Drosophila, the spalt gene is involved in cell fate determination and pattern formation in different tissues. We have cloned a chick homologue of Drosophila spalt, which we have termed csal1, and this study focuses on the regulation of csal1 expression in the limb bud. csal1 is expressed in limb buds from HH 17 to 26, in both the apical ectodermal ridge and the distal mesenchyme. Signals from the apical ridge are essential for csal1 expression, while the dorsal ectoderm is required for csal1 expression at a distance from the ridge. Our data indicate that both FGF and Wnt signals are required for the regulation of csal1 expression in the limb. Mutations in the human homologue of csal1, termed Hsal1/SALL1, result in a condition known as Townes-Brocks syndrome (TBS), which is characterized by preaxial polydactyly. The developmental expression of csal1 together with the digit phenotype in TBS patients suggests that csal1 may play a role in some aspects of distal patterning.  相似文献   

13.
 A central theme concerning the epimorphic regenerative potential of urodele amphibian appendages is that limb regeneration in the adult parallels larval limb development. Results of previous research have led to the suggestion that homeobox containing genes are ”re-expressed” during the epimorphic regeneration of forelimbs of adult Notophthalmus viridescens in patterns which retrace larval limb development. However, to date no literature exists concerning expression patterns of any homeobox containing genes during larval development of this species. The lack of such information has been a hindrance in exploring the similarities as well as differences which exist between limb regeneration in adults and limb development in larvae. Here we report the first such results of the localization of Hox C6 (formerly, NvHBox-1) in developing and regenerating forelimbs of N. viridescens larvae as demonstrated by whole-mount in situ hybridization. Inasmuch as the pattern of Hox C6 expression is similar in developing forelimb buds of larvae and epimorphically regenerating forelimb blastemata of both adults and larvae, our results support the paradigm that epimorphic regeneration in adult newts parallels larval forelimb development. However, in contrast with observations which document the presence of Hox C6 in both intact, as well as regenerating hindlimbs and tails of adult newts, our results reveal no such Hox C6 expression during larval development of hindlimbs or the tail. As such, our findings indicate that critical differences in larval hindlimb and tail development versus adult expression patterns of this gene in these two appendages may be due primarily to differences in gene regulation as opposed to gene function. Thus, the apparent ability of urodeles to regulate genes in such a highly co-ordinated fashion so as to replace lost, differentiated, appendicular structures in adult animals may assist, at least in part, in better elucidating the phenomenon of epimorphic regeneration. Received: 6 November 1998 / Accepted: 12 December 1998  相似文献   

14.
15.
16.
When a mouse zone of polarizing activity (ZPA) at the posterior margin of the limb bud was grafted into the anterior margin of the chick limb bud, the expressions of the chick homeobox genes HoxD12 and D13 were induced prior to the formation of chick extra digits. This induction was observed in a restricted domain close to both the grafted mouse ZPA and the chick apical ectodermal ridge (AER). When the posterior half of the AER was removed, the normal expression was diminished in the distaloposterior region. Thus, it is likely that at least two distinct factors, one from the ZPA and the other from the AER, act cooperatively to provide positional information to induce the sequential expression of the HoxD genes.  相似文献   

17.
18.
We have examined the expression pattern of the avian Meox1 homeobox gene during early development and up to late limb bud stages. Its expression pattern indicates that it is involved in somite specification and differentiation. The domains of expression are similar but different to those of Meox2. Meox1 is expressed from stage 6 in the pre-somitic mesoderm and as development proceeds, in the tail bud, the dermomyotome of the rostral somites and in the dermomyotome and sclerotome of the caudal somites, the lateral rectus muscle, truncus arteriosus of the heart and the limb buds. Unlike Meox1, Meox2 is not expressed in the pre-somitic mesoderm, but is expressed first in somites formed from stage 11 onwards. In the developing limb, both genes are expressed in the dorsal and ventral limb mesoderm in adjacent domains with a small region of overlap. In the limb bud, Meox1 is co-expressed with Meox2 but neither Meox gene is co-expressed with MyoD. These expression patterns suggest that these two genes have overlapping and distinct functions in development.  相似文献   

19.
20.
We have isolated the cDNA of avian Mox2 and analyzed its expression pattern during somitogenesis and limb bud formation. Mox2 plays an important role in limb muscle differentiation in the mouse. Mox2 is expressed in the somites of developing chick embryos and in presumptive migrating myoblasts from the dermomyotome to the limb buds. It is also expressed in the ventral and dorsal part of limb buds and is associated with non-proliferating myoblasts. Significant differences were observed in chick and mouse expression patterns, namely in the chick dermomyotome and limb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号