首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila melanogaster is a key model system that has greatly contributed to the advance of developmental biology through its extensive and sophisticated genetics. Nevertheless, only a few in vitro approaches are available in Drosophila to complement genetic studies in order to better elucidate developmental mechanisms at the cellular and molecular level. Here we present a dissociated cell culture system generated from the optic lobes of Drosophila larval brain. This culture system makes it feasible to study the proliferative properties of Drosophila postembryonic Nbs by allowing BrdU pulse and chase assays, as well as detailed immunocytochemical analysis with molecular markers. These immunofluorescence experiments allowed us to conclude that localization of asymmetric cell division markers such as Inscuteable, Miranda, Prospero and Numb is cell autonomous. By time-lapse video recording we have observed interesting cellular features of postembryonic neurogenesis such us the polarized genesis of the neuroblast progeny, the extremely short ganglion mother cell (GMC) cell cycle, and the last division of a neuroblast lineage. The combination of this cell culture system and genetic tools of Drosophila will provide a powerful experimental model for the analysis of cell cycle and asymmetric cell division of neural progenitor cells.  相似文献   

2.
生物发光及化学发光在生物医学领域中应用的进展   总被引:10,自引:0,他引:10  
生物发光和化学发光在生物医学领域内的应用主要包括细胞学检测,分子生物学、卫生学检测,生物传感器、脂质过氧化检测和药物筛选等六个方面,其中细胞学检测主要是利用细胞内ATP导致的虫荧光素酶发光进行活细胞计数,目前已实现快速、动态、单细胞分析;同时发现了一些新的与生物或化学发光有关的细胞学指标。分子生物学领域内的应用主要为报告基因和分子杂交,近年来又有人推出了生物发光实时DNA测序技术。卫生学检测则主要  相似文献   

3.
4.
The complex molecular events responsible for coordinating chromosome replication and segregation with cell division and growth are collectively known as the cell cycle. Progression through the cell cycle is orchestrated by the interplay between controlled protein synthesis and degradation and protein phosphorylation. Protein degradation is primarily regulated through the ubiquitin proteasome system, mediated by two related E3 protein ubiquitin ligases, the Skp1 cullin F-box (SCF) and the anaphase promoting complex (also known as the cyclosome) (APC/C). The APC/C is a multi-subunit cullin-RING E3 ubiquitin ligase that regulates progression through the mitotic phase of the cell cycle and controls entry into S phase by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D-box and KEN-box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. The aim of this article is to discuss the APC/C from a structural and mechanistic perspective. Although an atomic structure of the APC/C is still lacking, a combination of genetic, biochemical, electron microscopy studies of intact APC/C and crystallographic analysis of individual subunits, together with analogies to evolutionarily related E3 ligases of the RING family, has provided deep insights into the molecular mechanisms of catalysis and substrate recognition, and structural organisation of the APC/C.  相似文献   

5.
A number of cell culture model systems have been used to study the regulation of cell cycle progression at the molecular level. In this paper we describe the WI-38 cell long-term quiescence model system. By modulating the length of time that WI-38 cells are density arrested, it is possible to proportionately alter the length of the prereplicative or G-1 phase which the cell traverses after growth factor stimulation in preparation for entry into DNA synthesis. Through studies aimed at understanding the cause and molecular nature of the prolongation of the prereplicative phase, we have determined that gene expression plays an important role in establishing growth factor “competence” and that once the cell becomes “competent” there is a defined order to the molecular events that follow during the remainder of G-1. More specifically, we have determined that the prolongation represents a delay in the ability of long term quiescent cells to become fully “competent” to respond to growth factors which regulate progression through G-1 into S. This prolongation appears to occur as a result of changes during long term quiescence in the ability of immediate early G-1 specific genes (such as c-myc) to activate the expression of early G-1 specific genes (such as ornithine decarboxylase). While ODC is the first and thus far only growth associated gene identified as a target of c-myc (and the Myc/Max protein complex), it is likely that further studies in this model system will reveal other early G-1 growth regulatory genes. We anticipate that future follow-up studies in this model system will provide additional valuable information abuot the function of growth-regulatory genes in controlling growth factor responsiveness and cell cycle progression.  相似文献   

6.
7.
Cell death and survival play a key role in the immune system as well as during development. The control mechanisms that balance cell survival against cell death are not well understood. Here we report a novel strategy used by a single protein to regulate chronologically cell survival and death. The interferon-induced protein kinase PKR acts as a molecular clock by using catalysis-dependent and -independent activities to temporally induce cell survival prior to cell death. We show that the proapoptotic protein PKR surprisingly activates a survival pathway, which is mediated by NF-kappaB to delay apoptosis. Cell death is then induced by PKR through the phosphorylation of eIF-2alpha. This unique temporal control might serve as a paradigm for other kinases whose catalytic activity is not required for all of their functions.  相似文献   

8.
NEWCHEM, an artificial intelligence system for the control of cancer cell growth, is described. This system takes into account the most recent advances in molecular and cellular biology and in cell-drug interaction, and aims to develop optimal strategies for the selective control of cancer cell through qualitative reasoning from first principles at cellular level.  相似文献   

9.
Artificial intelligence techniques for the control of cancer cells   总被引:1,自引:0,他引:1  
NEWCHEM, an artificial intelligence system for the control of cancer cell growth, is described. This system takes into account the most recent advances in molecular and cellular biology and in cell-drug interaction, and aims to develop optimal strategies for the selective control of cancer cell through qualitative reasoning from first principles at cellular level.  相似文献   

10.
A series of novel benzothiepin-derived compounds are described as potent selective modulators of the human estrogen receptor (SERMs). The objective of the study is to evaluate the antiproliferative effects of the compounds on human MCF-7 breast tumor cells. These heterocyclic compounds contain the traditional triarylethylene arrangement exemplified by tamoxifen, conformationally restrained through the incorporation of the benzothiepin ring system. The compounds demonstrated potency at nanomolar concentrations in antiproliferative assays against an MCF-7 human breast cancer cell line with low cytotoxicity. The compounds exhibited low nanomolar binding affinity for the estrogen receptor (ER) with some specificity for ERbeta, and also demonstrate potent antiestrogenic properties in the human uterine Ishikawa cell line. The effect of a number of functional group substitutions on the ER binding properties of the benzothiepin molecular scaffold is explored through a brief computational structure-activity relationship investigation with molecular simulation.  相似文献   

11.
A series of novel benzothiepin-derived compounds are described as potent selective modulators of the human estrogen receptor (SERMs). The objective of the study is to evaluate the antiproliferative effects of the compounds on human MCF-7 breast tumor cells. These heterocyclic compounds contain the traditional triarylethylene arrangement exemplified by tamoxifen, conformationally restrained through the incorporation of the benzothiepin ring system. The compounds demonstrated potency at nanomolar concentrations in antiproliferative assays against an MCF-7 human breast cancer cell line with low cytotoxicity. The compounds exhibited low nanomolar binding affinity for the estrogen receptor (ER) with some specificity for ERβ, and also demonstrate potent antiestrogenic properties in the human uterine Ishikawa cell line. The effect of a number of functional group substitutions on the ER binding properties of the benzothiepin molecular scaffold is explored through a brief computational structure-activity relationship investigation with molecular simulation.  相似文献   

12.
System A is a secondary active, sodium dependent transport system for neutral amino acids. Strictly coupled with Na,KATPase, its activity determines the size of the intracellular amino acid pool, through a complex network of metabolic reaction and exchange fluxes. Many hormones and drugs affect system A activity in specific cell models or tissues. In all the cell models tested thus far the activity of the system is stimulated by amino acid starvation, cell cycle progression, and the incubation under hypertonic conditions. These three conditions produce marked alterations of cell volume. The stimulation of system A activity plays an important role in cell volume restoration, through an expansion of the intracellular amino acid pool. Under normal conditions, system A substrates represent a major fraction of cell compatible osmolytes, organic compounds that exert a protein stabilizing effect. It is, therefore, likely that the activation of system A represents a portion of a more complex response triggered by exposure to stresses of various nature. Since system A transporters have been recently cloned, the molecular bases of these regulatory mechanisms will probably be elucidated in a short time.  相似文献   

13.
System A is a secondary active, sodium dependent transport system for neutral amino acids. Strictly coupled with Na,K-ATPase, its activity determines the size of the intracellular amino acid pool, through a complex network of metabolic reaction and exchange fluxes. Many hormones and drugs affect system A activity in specific cell models or tissues. In all the cell models tested thus far the activity of the system is stimulated by amino acid starvation, cell cycle progression, and the incubation under hypertonic conditions. These three conditions produce marked alterations of cell volume. The stimulation of system A activity plays an important role in cell volume restoration, through an expansion of the intracellular amino acid pool. Under normal conditions, system A substrates represent a major fraction of cell compatible osmolytes, organic compounds that exert a protein stabilizing effect. It is, therefore, likely that the activation of system A represents a portion of a more complex response triggered by exposure to stresses of various nature. Since system A transporters have been recently cloned, the molecular bases of these regulatory mechanisms will probably be elucidated in a short time.  相似文献   

14.
15.
Understanding the connection between mechanics and cell structure requires the exploration of the key molecular constituents responsible for cell shape and motility. One of these molecular bridges is the cytoskeleton, which is involved with intracellular organization and mechanotransduction. In order to examine the structure in cells, we have developed a computational technique that is able to probe the self-assembly of actin filaments through a lattice based Monte Carlo method. We have modeled the polymerization of these filaments based upon the interactions of globular actin through a probabilistic model encompassing both inert and active proteins. The results show similar response to classic ordinary differential equations at low molecular concentrations, but a bi-phasic divergence at realistic concentrations for living mammalian cells. Further, by introducing localized mobility parameters, we are able to simulate molecular gradients that are observed in non-homogeneous protein distributionsin vivo. The method and results have potential applications in cell and molecular biology as well as self-assembly for organic and inorganic systems.  相似文献   

16.
Membrane fusion plays a key role in many biological processes including vesicle trafficking, synaptic transmission, fertilization or cell entry of enveloped viruses. As a common feature the fusion process is mediated by distinct membrane proteins. We describe here ‘Fusoselect’, a universal procedure allowing the identification and engineering of molecular determinants for cell–cell fusion-activity by directed evolution. The system couples cell–cell fusion with the release of retroviral particles, but can principally be applied to membrane proteins of non-viral origin as well. As a model system, we chose a γ-retroviral envelope protein, which naturally becomes fusion-active through proteolytic processing by the viral protease. The selection process evolved variants that, in contrast to the parental protein, mediated cell–cell fusion in absence of the viral protease. Detailed analysis of the variants revealed molecular determinants for fusion competence in the cytoplasmic tail (CT) of retroviral Env proteins and demonstrated the power of Fusoselect.  相似文献   

17.
In recent years, molecular biologists have uncovered a wealth of information about the proteins controlling cell growth and division in eukaryotes. The regulatory system is so complex that it defies understanding by verbal arguments alone. Quantitative tools are necessary to probe reliably into the details of cell cycle control. To this end, we convert hypothetical molecular mechanisms into sets of nonlinear ordinary differential equations and use standard analytical and numerical methods to study their solutions. First, we present a simple model of the antagonistic interactions between cyclin-dependent kinases and the anaphase promoting complex, which shows how progress through the cell cycle can be thought of as irreversible transitions (Start and Finish) between two stable states (G1 and S-G2-M) of the regulatory system. Then we add new pieces to the "puzzle" until we obtain reasonable models of the control systems in yeast cells, frog eggs, and cultured mammalian cells.  相似文献   

18.
The olfactory system shares many principles of functional organization with other sensory systems, but differs in that the sensory input is in the form of molecular information carried in odor molecules. Current studies are providing new insights into how this information is processed. In analogy with the spatial receptive fields of visual neurons, the molecular receptive range of olfactory cells is defined as the range of odor molecules that will affect the firing of that cell. Olfactory receptor molecules belong to a large gene family; it is hypothesized that individual receptor molecule may have relatively broad molecular receptive ranges, and that an individual receptor cell need therefore express only one or a few different types of receptors to cover a broad range. Mitral/tufted cells have narrower molecular receptive ranges, comprising molecules with related structures (odotopes). This is believed to reflect processing through the olfactory glomeruli, each glomerulus acting as a convergence center for related inputs. Varying overlapping specificities of receptor cells, glomeruli and mitral/tufted cells appear to provide the basis for discrimination of odor molecules, in analogy with discrimination of color in the visual systems.  相似文献   

19.
An L  Zhou Z  Su S  Yan A  Gan Y 《Plant & cell physiology》2012,53(2):457-469
Cell differentiation generally corresponds to the cell cycle, typically forming a non-dividing cell with a unique differentiated morphology, and Arabidopsis trichome is an excellent model system to study all aspects of cell differentiation. Although gibberellic acid is reported to be involved in trichome branching in Arabidopsis, the mechanism for such signaling is unclear. Here, we demonstrated that GLABROUS INFLORESCENCE STEMS (GIS) is required for the control of trichome branching through gibberellic acid signaling. The phenotypes of a loss-of-function gis mutant and an overexpressor showed that GIS acted as a repressor to control trichome branching. Our results also show that GIS is not required for cell endoreduplication, and our molecular and genetic study results have shown that GIS functions downstream of the key regulator of trichome branching, STICHEL (STI), to control trichome branching through the endoreduplication-independent pathway. Furthermore, our results also suggest that GIS controls trichome branching in Arabidopsis through two different pathways and acts either upstream or downstream of the negative regulator of gibbellic acid signaling SPINDLY (SPY).  相似文献   

20.
The Flamingo/Celsr seven-transmembrane cadherins represent a conserved subgroup of the cadherin superfamily involved in multiple aspects of development. In the developing nervous system, Fmi/Celsr control axonal blueprint and dendritic morphogenesis from invertebrates to mammals. As expected from their molecular structure, seven-transmembrane cadherins can induce cell–cell homophilic interactions but also intracellular signaling. Fmi/Celsr is known to regulate planar cell polarity (PCP) through interactions with PCP proteins. In the nervous system, Fmi/Celsr can function in collaboration with or independently of other PCP genes. Here, we focus on recent studies which show that seven-transmembrane cadherins use distinct molecular mechanisms to achieve diverse functions in the development of the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号