首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active carbons have unique physicochemical properties, but their conductivities and surface to weight ratios are much poorer than graphene. A unique and facile method is innovated to chemically process biomass by “drilling” holes with H2O2 and exfoliating into graphene‐like nanosheets with HAc, followed by carbonization at a high temperature for highly graphitized activated carbon with greatly enhanced porosity, unique pore structure, high conductivity, and large surface area. This graphene‐like carbon exhibits extremely high specific capacitance (340 F g?1 at 0.5 A g?1) and high specific energy density (23.33 to 16.67 W h kg?1) with excellent rate capability and long cycling stability (remains 98% after 10 000 cycles), which is much superior to all reported carbons including graphene. Synthesis mechanism for deriving biomass into porous graphene‐like carbons is discussed in detail. The enhancement mechanism for the porous graphene‐like carbon electrode reveals that rationally designed meso‐ and macropores are very critical in porous electrode performance, which can network micropores for diffusion freeways, high conductivity, and high utilization. This work has universal significance in producing highly porous and conductive carbons from biomass including biowastes for various energy storage/conversion applications.  相似文献   

2.
Pathways followed by the carbons of long chain fatty acids in their conversion to 3-hydroxybutyric acid were traced and the contribution of ω-oxidation to fatty acid oxidation was determined in the cellular environment where ketone body formation occurs. 1-14C-, 2-14C-, and ω-14C-labeled fatty acids were injected into alloxan-induced diabetic rats in ketosis. 3-Hydroxybutyric acid was isolated from their urines and degraded. About 1.2 to 1.4 times as much 14C was found in carbon 1 as carbon 3 of 3-hydroxybutyric acid when the 1-14C-labeled fatty acids were injected and in carbon 2 as carbon 4 when the 2-14C-labeled fatty acids were injected. There was about 4 times as much incorporation into carbon 4 as carbon 2 of 3-hydroxybutyric acid formed from the ω-14C-labeled fatty acids. This means that 50% or more of the fatty acids were oxidized, so that the terminal two carbons of the fatty acids were converted to acetoacetyl-CoA without acetyl-CoA as an intermediate. Incorporation of 14C into carbons 1 and 2 of the hydroxybutyric acid reflects the distribution of 14C in acetyl-CoA. Incorporation into carbon 1 was very small when the ω-14C-labeled fatty acids were substrate. This means that ω-oxidation of fatty acids makes, at most, a small contribution to the formation of the acetyl-CoA pool from which acetoacetate is derived.  相似文献   

3.
Substrate specificity of cis-desaturation of alipahtic compounds by resting cells of a mutant, Rhodococcus sp. strain KSM-MT66, was examined. Among substrates tested, the rhodococcal cells were able to convert n-alkanes (C13-C19), 1-chloroalkanes (C16 and C18), ethyl fatty acids (C14-C17) and alkyl (C1-C4) esters of palmitic acid to their corresponding unsaturated products of cis configuration. The products from n-alkanes and 1-chloroalkanes had a double bond mainly at the 9th carbon from their terminal methyl groups, and the products from acyl fatty acids had a double bond mainly at the 6th carbon from their carbonyl carbons.  相似文献   

4.
《Journal of phycology》2001,37(Z3):39-39
Ottman, F. Purchase College, State University of New York, Purchase NY 10577 Fish aquaculture produces a nutrient-rich effluent. One means to remediate the discharge of these effluents is to couple seaweed culture with that of fine-fish. Seaweeds assimilate inorganic nutrients and some may produce tissue that can be sold. Porphyra culture is a multi-billion dollar global industry producing edible biomass and high-value biochemicals. To identify fast growers, we have examined the carbon metabolism of Porphyra purpurea, P.umbilicalis and P.leucosticta by measuring photosynthetic production at light levels ranging from 17 μmol photon m-2 s-1 (sub-saturating) up to 315 μmol photon m-2 s-1 (saturating). These experiments identified species that are efficient at low (higher Κ) and high irradiances (Pmax). The three species were also evaluated at growth temperatures 5°C, 15°C and 20° C to determine optimal growth temperatures along with varying nutrient concentrations. Results of these experiments will help choose Porphyra species for maximum growth and biomass under varying light, nutrient concentration and temperature conditions.  相似文献   

5.
A method was developed to estimate specific rates of demethylation of methyl mercury in aquatic samples by measuring the volatile 14C end products of 14CH3HgI demethylation. This method was used in conjunction with a 203Hg2+ radiochemical method which determines specific rates of mercury methylation. Together, these methods enabled us to examine some factors controlling the net rate of mercury methylation. The methodologies were field tested, using lake sediment samples from a recently flooded reservoir in the Southern Indian Lake system which had developed a mercury contamination problem in fish. Ratios of the specific rates of methylation/demethylation were calculated. The highest ratios of methylation/demethylation were calculated. The highest ratios of methylation/demethylation occurred in the flooded shorelines of Southern Indian Lake. These results provide an explanation for the observed increases in the methyl mercury concentrations in fish after flooding.  相似文献   

6.
For the investigation of rotenone biosynthesis, acetate-2-14C, mevalonic acid-2-14C lactone and methionine-methyl-14C were administered to Derris elliptica plants, respectively, and the distribution of carbon-14 in the labeled rotenone was determined by degradation. When mevalonic acid-2-14C lactone was incorporated into rotenone, the radioactivity was found equally in the carbons at both C-7′ and C-8′, indicating that these carbons are derived from the carbon-2 of mevalonic lactone. In the case of methionine-methyl-14C about 80% of the total radioactivity was found to enter two methoxyl groups. This result demonstrates that methionine is an efficient precursor of the methoxyl group. Furthermore, it is also suggested that methionine may be a precursor of the carbon at C-6.  相似文献   

7.
Novel mechanochemical activation generates biomass‐derived carbons with unprecedented CO2 storage capacity due to higher porosity than analogous conventionally activated carbons but similar pore size. The mechanochemical activation, or so‐called compactivation, process involves compression, at 740 MPa, of mixtures of activating agent (KOH) and biomass hydrochar into pellets/disks prior to thermal activation. Despite the increase in surface area and pore volume of between 25% and 75% compared to conventionally activated carbons, virtually all of the porosity of the biomass (sawdust and lignin) derived mechanochemically activated carbons is from small micropores (5.8–6.5 Å), which results in a dramatic increase in CO2 storage capacity at 25 °C and low pressure (≤1 bar). The ambient temperature CO2 uptake for a carbon derived from sawdust at 600 °C and a KOH/carbon ratio of 2, rises from 1.3 to 2.0 mmol g?1 at 0.15 bar, and from 4.3 to 5.8 mmol g?1 at 1 bar, which is the highest ever reported for carbonaceous materials. The mechanochemically activated carbons have a superior CO2 working capacity for pressure swing adsorption and vacuum swing adsorption processes and, due to a high packing density, they exhibit excellent volumetric CO2 uptake that is higher than for any material reported to date.  相似文献   

8.
Much of our understanding about how carbon (C) is allocated in plants comes from radiocarbon (14C) pulse‐chase labeling experiments. However, the large amounts of 14C required for decay‐counting mean that these studies have been restricted for the most part to mesocosm or controlled laboratory experiments. Using the enhanced sensitivity for 14C detection available with accelerator mass spectrometry (AMS), we tested the utility of a low‐level 14C pulse‐chase labeling technique for quantifying C allocation patterns and the contributions of different plant components to total ecosystem respiration in a black spruce forest stand in central Manitoba, Canada. All aspects of the field experiment used 14C at levels well below regulated health standards, without significantly altering atmospheric CO2 concentrations. Over 30 days following the label application in late summer (August and September), we monitored the temporal and spatial allocation patterns of labeled photosynthetic products by measuring the amount and 14C content of CO2 respired from different ecosystem components. The mean residence times (MRT) for labeled photosynthetic products to be respired in the understory (feather mosses), canopy (black spruce), and rhizosphere (black spruce roots and associated microbes) were <1, 6, and 15 days, respectively. Respiration from the canopy and understory showed significantly greater influence of labeled photosynthates than excised root and intact rhizosphere respiration. After 30 days,∼65% of the label assimilated had been respired by the canopy,∼20% by the rhizosphere, and∼9% by the understory, with∼6% unaccounted for and perhaps remaining in tissues. Maximum 14C values in root and rhizosphere respiration were reached 4 days after label application. The label was still detectable in root, rhizosphere and canopy respiration after 30 days; these levels of remaining label would not have been detectible had a 13C label been applied. Our results support previous studies indicating that a substantial portion of the C fueling rhizosphere respiration in the growing season may be derived from stored C pools rather than recent photosynthetic products.  相似文献   

9.
The main products of carbon fixation in the red algae are sulfated cell-wall polysaccharides, floridean starch, and low molecular weight (LMW) carbohydrates, mainly floridoside. In the red microalga Porphyridium sp., sulfated polysaccharide—cell bound and soluble—comprises up to 70% of the algal biomass. The purpose of this study was to elucidate the partitioning of fixed carbon in Porphyridium sp. toward the different products of carbon fixation. Using pulse-chase technique with [14C]bicarbonate, we followed 14C flow into the major compounds, namely, cell-wall polysaccharide, floridoside, starch, and protein, under various environmental conditions (i.e. carbon dioxide enrichment and nitrate starvation). 13C-NMR and gas chromatography analysis showed the main LMW product in Porphyridium sp. to be floridoside. After the short [14C]bicarbonate pulse (20 min), 42%–53% of total 14C uptake was initially found in floridoside. The appearance of 14C in the soluble polysaccharide was evident immediately at the end of the 20-min [14C]bicarbonate pulse. The specific radioactivity in the floridoside fraction declined by 80% after the 48-h chase, this decline being accompanied by increased labeling of starch and the soluble polysaccharide. In cells exposed to high CO2 concentration, larger amounts of 14C (about twice as much) were channeled into starch and soluble polysaccharide than in cells under low CO2 concentration. The most significant increase (1500%) in labeling during chase was found in the soluble polysaccharide of the nitrate-deprived cultures. It therefore seems likely that the large amounts of carbon incorporated by Porphyridium sp. cells into floridoside were subsequently used for the synthesis of macromolecular components. The data thus support the premise that floridoside serves as a dynamic carbon pool, which channels the fixed carbon toward polysaccharides and other end products according to the ambient conditions.  相似文献   

10.
Chemoautotrophy has been little studied in typical coastal marine sediments, but may be an important component of carbon recycling as intense anaerobic mineralization processes in these sediments lead to accumulation of high amounts of reduced compounds, such as sulfides and ammonium. We studied chemoautotrophy by measuring dark-fixation of 13C-bicarbonate into phospholipid derived fatty acid (PLFA) biomarkers at two coastal sediment sites with contrasting sulfur chemistry in the Eastern Scheldt estuary, the Netherlands. At one site where free sulfide accumulated in the pore water right to the top of the sediment, PLFA labeling was restricted to compounds typically found in sulfur and ammonium oxidizing bacteria. At the other site, with no detectable free sulfide in the pore water, a very different PLFA labeling pattern was found with high amounts of label in branched i- and a-PLFA besides the typical compounds for sulfur and ammonium oxidizing bacteria. This suggests that other types of chemoautotrophic bacteria were also active, most likely Deltaproteobacteria related to sulfate reducers. Maximum rates of chemoautotrophy were detected in first 1 to 2 centimeters of both sediments and chemosynthetic biomass production was high ranging from 3 to 36 mmol C m−2 d−1. Average dark carbon fixation to sediment oxygen uptake ratios were 0.22±0.07 mol C (mol O2)−1, which is in the range of the maximum growth yields reported for sulfur oxidizing bacteria indicating highly efficient growth. Chemoautotrophic biomass production was similar to carbon mineralization rates in the top of the free sulfide site, suggesting that chemoautotrophic bacteria could play a crucial role in the microbial food web and labeling in eukaryotic poly-unsaturated PLFA was indeed detectable. Our study shows that dark carbon fixation by chemoautotrophic bacteria is a major process in the carbon cycle of coastal sediments, and should therefore receive more attention in future studies on sediment biogeochemistry and microbial ecology.  相似文献   

11.
A Gram-positive bacterium which was isolated from a Finnish soil and identified as a Nocardia sp., was able to decompose lignin and to assimilate lignin degradation products as a carbon source. It could release 14CO2 from 14C-labelled methoxyl groups, side chains or ring carbons of coniferyl alcohol dehydropolymers (DHP) and from specifically 14C-labelled lignin of plant material. Furthermore, it could release 14CO2 from phenolcarboxylic and cinnamic acids and alcohols labelled in the OCH3, COOH groups, side chain or aromatic ring carbons.Non-Common Abbreviations Used DHP dehydropolymers of coniferyl alcohol  相似文献   

12.
The assimilation and utilization of the individual carbon atoms of pyruvate and acetate by cells of Thiobacillus thioparus and T. neapolitanus, in the presence and absence of an energy source, were studied by use of radioactive substrates. Both organisms produced 14CO2 from 14C-labeled pyruvate, but more came from carbon 1 than from carbons 2 or 3. The conversion of the carbons of acetate to CO2 by both organisms was much less than that from any of the pyruvate carbons. When labeled pyruvate and acetate were incubated with these organisms, small amounts of radioactivity were found in the tricholoacetic acid-soluble material, nucleic acids, and lipids, and larger amounts were found in the protein fraction. The composition of the incubation medium affected the amount of utilization and incorporation of labeled substrates by both organisms. The presence of an exogenous energy source (Na2S2O3) suppressed incorporation of the labeled substrates into various cellular components by T. thioparus, but enhanced incorporation by T. neapolitanus. When 14C-pyruvate was used as a substrate, as many as 12 radioactive compounds were found in the water-soluble fraction in the experiments with T. neapolitanus, whereas no more than three radioactive compounds were detected in this fraction in the experiments with T. thioparus. Of the total 14C activity found in the water-soluble fractions, malic acid contained the highest percentage. These findings are discussed in light of the overall metabolism of these two sulfur-oxidizing obligate chemoautotrophs, as well as in relation to the biochemical basis of chemoautotrophy.  相似文献   

13.
1. A study has been made of the incorporation of carbon from [14C]methane, [14C]methanol and [14C]bicarbonate by cultures of Pseudomonas methanica growing on methane, and [14C]methanol by cultures of the same organism growing on methanol. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled compound for periods up to 3min., has been analysed by chromatography and radioautography. 3. Over 90% of the radioactivity fixed from [14C]methane or [14C]methanol at the earliest times of sampling appeared in phosphorylated compounds. Glucose phosphate and fructose phosphate together constituted the largest part of the radioactive phosphates (70–90%); phosphoglycerate was a relatively minor component (2–17%). Other compounds becoming labelled during the incubation included glycine, serine, glutamate, aspartate, malate, citrate and alanine. 4. The first stable products of [14C]bicarbonate fixation were malate and aspartate (containing between them over 90% of the total radioactivity fixed at the earliest times of sampling). 5. The percentage of the total radioactivity fixed that was contained in each of the radioactive compounds has been plotted against time. The slopes of the curves obtained show that hexose phosphates are primary stable products of [14C]methane and [14C]methanol incorporation and that aspartate and malate are primary stable products of [14C]bicarbonate incorporation. 6. No carboxydismutase activity has been found in cell-free extracts of the organism. This fact, together with the other findings, shows that an autotrophic metabolism involving the ribulose diphosphate cycle of carbon dioxide fixation cannot be operating.  相似文献   

14.
The isotope decay method of estimating belowground net primary production (BNPP) has the potential to overcome the assumptions and biases associated with traditional methods. Isotope loss through in situ decomposition after pulse-labeling is considered the inverse of production, and turnover times are estimated by regression to time of zero remaining isotope. Method development and estimates of production were previously published using 4 years of data, which showed a clear linear loss rate over time. A slow, distinctly different phase in isotope loss developed 5–10 years postlabeling. We assess reasons for the two-phase loss functions and the implications for estimates of BNPP and compare the isotope decay method with standard coring methods over a 13-year period. Reasons for the two-phase dynamics of carbon 14 (14C) loss could include various biological and/or methodological factors. Results suggest that 14C in soil embedded in roots as they grow, a small proportion of roots that live for a much longer time than the majority of roots, and method of separating roots from soil organic matter may influence estimates of BNPP by isotope methods. Remobilization of label in structural tissue or reuptake of label from the soil did not appear to be responsible for the slow, second phase of loss dynamics. Isotope decay produced more reliable estimates than standard coring methods. Estimates using harvest sum of increments were zero in 6 of 13 years. Thirteen years of root biomass data showed no predictable trend over winter or consistent seasonal pattern, although longer-term cycles were evident. Aboveground:belowground ratios were generally smaller during dry periods, but root biomass was not as responsive as aboveground biomass to annual precipitation. Received 31 May 2000; accepted 3 November 2000.  相似文献   

15.
The efficiency with which developing maize embryos convert substrates into seed storage reserves was determined to be 57–71%, by incubating developing maize embryos with uniformly labeled 14C substrates and measuring their conversion to CO2 and biomass products. To map the pattern of metabolic fluxes underlying this efficiency, maize embryos were labeled to isotopic steady state using a combination of labeled 13C-substrates. Intermediary metabolic fluxes were estimated by computer-aided modeling of the central metabolic network using the labeling data collected by NMR and GC-MS and the biomass composition. The resultant flux map reveals that even though 36% of the entering carbon goes through the oxidative pentose-phosphate pathway, this does not fully meet the NADPH demands for fatty acid synthesis. Metabolic flux analysis and enzyme activities highlight the importance of plastidic NADP-dependent malic enzyme, which provides one-third of the carbon and NADPH required for fatty acid synthesis in developing maize embryos.  相似文献   

16.
Two Rhodococcus strains which were isolated from a trichloroethylene (TCE)-degrading bacterial mixture and Rhodococcus rhodochrous ATCC 21197 mineralized vinyl chloride (VC) and TCE. Greater than 99.9% of a 1-mg/liter concentration of VC was degraded by cell suspensions. [1,2-14C]VC was degraded by cell suspensions, with the production of greater than 66% 14CO2 and 20% 14C-aqueous phase products and incorporation of 10% of the 14C into the biomass. Cultures that utilized propane as a substrate were able to mineralize greater than 28% of [1,2-14C]TCE to 14CO2, with approximately 40% appearing in 14C-aqueous phase products and another 10% of 14C incorporated into the biomass. VC degradation was oxygen dependent and occurred at a pH range of 5 to 10 and temperatures of 4 to 35°C. Cell suspensions degraded up to 5 mg of TCE per liter and up to 40 mg of VC per liter. Propane competitively inhibited TCE degradation. Resting cell suspensions also degraded other chlorinated aliphatic hydrocarbons, such as chloroform, 1,1-dichloroethylene, and 1,1,1-trichloroethane. The isolates degraded a mixture of aromatic and chlorinated aliphatic solvents and utilized benzene, toluene, sodium benzoate, naphthalene, biphenyl, and n-alkanes ranging in size from propane to hexadecane as carbon and energy sources. The environmental isolates appeared more catabolically versatile than R. rhodochrous ATCC 21197. The data report that environmental isolates of Rhodococcus species and R. rhodochrous ATCC 21197 have the potential to degrade TCE and VC in addition to a variety of aromatic and chlorinated aliphatic compounds either individually or in mixtures.  相似文献   

17.
Radiocarbon (14C) dating, now in its fifth decade of general use, continues to be the most widely employed method of inferring chronometric age for late Pleistocene and Holocene age materials recovered from archeological contexts. Over the last decade, several technical advances in 14C studies have provided contexts for a number of significant applications in archeology that were previously either not possible or not practical. These include the extension of the calibrated 14C time scale into the late Pleistocene and the development of accelerator mass spectrometry (AMS). The contribution of AMS-based 14C values to the critical evaluation of archeological data is illustrated by considering the problems of dating early plant domestication in the Near East and Mesoamerica, New World Paleoindian human skeletal materials, and European Upper Paleolithic and Mesolithic materials.  相似文献   

18.
Chemical and isotopic changes in plant biochemicals that were transformed into organic geochemicals have been measured in anaerobic, freshwater marsh environments. In two litter bag studies, plant biochemicals decayed extensively in the first year, as recorded by dry weight, C:N ratios, δ15N of bulk tissue and amino acids, and δ13C of individual amino acids. Molecular analyses of Rubisco revealed that the high-molecular-weight enzyme subunit could be recognized antigenically for at least 12 months, but concentrations and amounts declined. Geochemical compounds, advanced glycation endproducts, were not found in fresh plants, but formed gradually with first indications documented at 3 months. The organic remains of plants were reworked or replaced by microbial products from decomposition, as indicated by a shift in the isotopic composition of individual amino acids in total plant protein. In experiments with Rubisco, isotopic changes over time in the individual amino acids in the 50–60 kDa molecular weight range were substantial. These high-molecular-weight substances were no longer pristine molecules. Biochemical and isotopic tools for studying living processes have been demonstrated to be effective and novel approaches to identify and quantify altered geochemical remnants. Received: 1 July 1998 / Accepted: 15 March 1999  相似文献   

19.
To estimate the degree of recycling of pyruvate during gluconeogenesis, an isotope tracer procedure was employed. Using the isolated, perfused rat liver with pyruvate-2-14C in the perfusion fluid, the 3-carbon acids lactate and pyruvate were isolated and the distribution of 14C in each carbon was assayed. It can be shown that the degree of recycling can be approximated as twice the sum of 14C in carbons 1 and 3. Glucose, acetoacetate, and β-hydroxybutyrate were also determined, and their 14C distribution estimated by appropriate degradation procedures. In livers from fasted rats, recycling of pyruvate during 1 hr incubation occurred at a rate of 0.21 μmoles ± 0.02 (SE)/min/g while gluconeogenesis occurred at a rate of 0.49 ± 0.11 μmoles pyruvate-2-14C/min/g. In livers from carbohydrate-fed rats, the ratio was reversed, with 0.35 ± 0.06 μmoles pyruvate-2-14C recycled and only 0.09 ± 0.03 μmoles converted to glucose. These patterns were not affected by the simultaneous presence of octanoate in the perfusion, during which ketone body production was greatly increased. Only about 20% of the ketone bodies formed were derived from pyruvate, much less with octanoate present, and over 95% of the total radioactivity was in carbons 1 and 3 of acetoacetate as anticipated from the degree of pyruvate recycling. The glucose invariably had 3–4% of its total activity in carbons 3 and 4 and the remainder distributed approximately equally in carbons 1, 2, 5, and 6. The radioactivity in respired CO2 indicated that about 13–25% of the total O2 uptake was due to pyruvate oxidation to CO2.  相似文献   

20.
We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号