首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A set of microcosm experiments was performed to assess different bioremediation strategies, i.e., biostimulation and bioaugmentation, for groundwater contaminated with chlorobenzenes. The biodegradative potential was stimulated either by the supply of electron acceptors (air, (NO 3 ), to increase the activity of the indigenous bacterial community, or by the addition of aerobic chlorobenzene-degrading bacteria (Pseudomonas putida GJ31, Pseudomonas aeruginosa RHO1, Pseudomonas putida F1CC). Experiments were performed with natural groundwater of the aquifer of Bitterfeld, which had been contaminated with 1,2-dichlorobenzene (1,2-DCB), 1,4-dichlorobenzene (1,4-DCB), and chlorobenzene (CB). The microcosms consisted of airtight glass bottles with 800 mL of natural groundwater and were incubated under in situ temperature (13°C). Behavior of the introduced strains within the indigenous bacterial community was monitored by fluorescent in situ hybridization (FISH) with species-specific oligonucleotides. Dynamics of the indigenous community and the introduced strains within the microcosms were followed by single-strand conformation polymorphism (SSCP) analysis of 16S rDNA amplicons obtained from total DNA of the microbial community. An indigenous biodegradation potential under aerobic as well as anaerobic denitrifying conditions was observed accompanied by fast and specific changes in the natural bacterial community composition. Augmentation with P. aeruginosa RHO1 did not enhance bio-degradation. In contrast, both P. putida GJ31 as well as P. putida F1CC were capable of growing in groundwater, even in the presence of the natural microbial community, and thereby stimulating chlorobenzene depletion. P. putida GJ31 disappeared when the xenobiotics were depleted and P. putida F1CC persisted even in the absence of CB. Detailed statistical analyses revealed that community dynamics of the groundwater microbiota were highly reproducible but specific to the introduced strain, its inoculum size, and the imposed physicochemical conditions. These findings could contribute to the design of better in situ bioremediation strategies for contaminated groundwater.  相似文献   

2.
The microbial community of a groundwater system contaminated by 1,2-dichloroethane (1,2-DCA), a toxic and persistent chlorinated hydrocarbon, has been investigated for its response to biostimulation finalized to 1,2-DCA removal by reductive dehalogenation. The microbial population profile of samples from different wells in the aquifer and from microcosms enriched in the laboratory with different organic electron donors was analyzed by ARISA (Amplified Ribosomal Intergenic Spacer Analysis) and DGGE (Denaturing Gradient Gel Electrophoresis) of 16S rRNA genes. 1,2-DCA was completely removed with release of ethene from most of the microcosms supplemented with lactate, acetate plus formate, while cheese whey supported 1,2-DCA dehalogenation only after a lag period. Microbial species richness deduced from ARISA profiles of the microbial community before and after electron donor amendments indicated that the response of the community to biostimulation was heterogeneous and depended on the well from which groundwater was sampled. Sequencing of 16S rRNA genes separated by DGGE indicated the presence of bacteria previously associated with soils and groundwater polluted by halogenated hydrocarbons or present in consortia active in the removal of these compounds. A PCR assay specific for Desulfitobacterium sp. showed the enrichment of this genus in some of the microcosms. The dehalogenation potential of the microbial community was confirmed by the amplification of dehalogenase-related sequences from the most active microcosms. Cloning and sequencing of PCR products indicated the presence in the metagenome of the bacterial community of a new dehalogenase potentially involved in 1,2-DCA reductive dechlorination.  相似文献   

3.
The microbial community of a groundwater system contaminated by 1,2-dichloroethane (1,2-DCA), a toxic and persistent chlorinated hydrocarbon, has been investigated for its response to biostimulation finalized to 1,2-DCA removal by reductive dehalogenation. The microbial population profile of samples from different wells in the aquifer and from microcosms enriched in the laboratory with different organic electron donors was analyzed by ARISA (Amplified Ribosomal Intergenic Spacer Analysis) and DGGE (Denaturing Gradient Gel Electrophoresis) of 16S rRNA genes. 1,2-DCA was completely removed with release of ethene from most of the microcosms supplemented with lactate, acetate plus formate, while cheese whey supported 1,2-DCA dehalogenation only after a lag period. Microbial species richness deduced from ARISA profiles of the microbial community before and after electron donor amendments indicated that the response of the community to biostimulation was heterogeneous and depended on the well from which groundwater was sampled. Sequencing of 16S rRNA genes separated by DGGE indicated the presence of bacteria previously associated with soils and groundwater polluted by halogenated hydrocarbons or present in consortia active in the removal of these compounds. A PCR assay specific for Desulfitobacterium sp. showed the enrichment of this genus in some of the microcosms. The dehalogenation potential of the microbial community was confirmed by the amplification of dehalogenase-related sequences from the most active microcosms. Cloning and sequencing of PCR products indicated the presence in the metagenome of the bacterial community of a new dehalogenase potentially involved in 1,2-DCA reductive dechlorination.  相似文献   

4.
Groundwater sampling is a critical step in subsurface microbial ecology. Here, we compared two different sampling methods: commonly used disposable bailers (unimproved sampler) and an improved sampler, the latter of which was devised to minimize exposure to the aerobic atmosphere. Microbial community analysis using the 16S rRNA and methyl coenzyme-M reductase (mcrA) genes in the lignite seam groundwater revealed that the archaeal communities in samples obtained by the improved sampler were dominated by hydrogenotrophic methanogen Methanobacterium. These results suggested that the improved sampler would be more favorable for obtaining methanogenic archaeal community than the unimproved one, and that the sampling method affected the microbial community analysis in the investigated subterranean lignite seams.  相似文献   

5.
At Department of Energy Site 300, beneficial hydrocarbon cocontaminants and favorable subsurface conditions facilitate sequential reductive dechlorination of trichloroethene (TCE) and rapid oxidation of the resultant cis-dichloroethene (cis-DCE) upon periodic oxygen influx. We assessed the geochemistry and microbial community of groundwater from across the site. Removal of cis-DCE was shown to coincide with oxygen influx in hydrocarbon-containing groundwater near the source area. Principal component analysis of contaminants and inorganic compounds showed that monitoring wells could be differentiated based upon concentrations of TCE, cis-DCE, and nitrate. Structurally similar communities were detected in groundwater from wells containing cis-DCE, high TCE, and low nitrate levels. Bacteria identified by sequencing 16S rRNA genes belonged to seven phylogenetic groups, including Alpha-, Beta-, Gamma- and Deltaproteobacteria, Nitrospira, Firmicutes and Cytophaga-Flexibacter-Bacteroidetes (CFB). Whereas members of the Burkholderiales and CFB group were abundant in all wells (10(4)-10(9) 16S rRNA gene copies L(-1)), quantitative PCR showed that Alphaproteobacteria were elevated (>10(6) L(-1)) only in wells containing hydrocarbon cocontaminants. The study shows that bacterial community structure is related to groundwater geochemistry and that Alphaproteobacteria are enriched in locales where cis-DCE removal occurs.  相似文献   

6.
Aims:  To investigate the factors affecting benzene biodegradation and microbial community composition in a contaminated aquifer.
Methods and Results:  We identified the microbial community in groundwater samples from a benzene-contaminated aquifer situated below a petrochemical plant. Eleven out of twelve groundwater samples with in situ dissolved oxygen concentrations between 0 and 2·57 mg l−1 showed benzene degradation in aerobic microcosm experiments, whereas no degradation in anaerobic microcosms was observed. The lack of aerobic degradation in the remaining microcosm could be attributed to a pH of 12·1. Three groundwaters, examined by 16S rRNA gene clone libraries, with low in situ oxygen concentrations and high benzene levels, each had a different dominant aerobic (or denitrifying) population, either Pseudomonas , Polaromonas or Acidovorax species. These groundwaters also had syntrophic organisms, and aceticlastic methanogens were detected in two samples. The alkaline groundwater was dominated by organisms closely related to Hydrogenophaga .
Conclusions:  Results show that pH 12·1 is inimical to benzene biodegradation, and that oxygen concentrations below 0·03 mg l−1 can support aerobic benzene-degrading communities.
Significance and Impact of the Study:  These findings will help to guide the treatment of contaminated groundwaters, and raise questions about the extent to which aerobes and anaerobes may interact to effect benzene degradation.  相似文献   

7.
Changes in bacterial diversity during the field experiment on biostimulation were monitored by denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA fragments. The results revealed that the bacterial community was disturbed after the start of treatment, continued to change for 45 days or 60 days and then formed a relatively stable community different from the original community structure. DGGE analysis of soluble methane monooxygenase (sMMO) hydroxylase gene fragments, mmoX, was performed to monitor the shifts in the numerically dominant sMMO-containing methanotrophs during the field experiment. Sequence analysis on the mmoX gene fragments from the DGGE bands implied that the biostimulation treatment caused a shift of potential dominant sMMO-containing methanotrophs from type I methanotrophs to type II methanotrophs.  相似文献   

8.
Anaerobic/aerobic conditions affected bacterial community composition and the subsequent chlorophenols (CPs) degradation in biocathode microbial fuel cells (MFCs). Bacterial communities acclimated with either 4-chlorophenol (4-CP) or 2,4-dichlorophenol (2,4-DCP) under anaerobiosis can degrade the respective substrates more efficiently than the facultative aerobic bacterial communities. The anaerobic bacterial communities well developed with 2,4-DCP were then adapted to 2,4,6-trichlorophenol (2,4,6-TCP) and successfully stimulated for enhanced 2,4,6-TCP degradation and power generation. A 2,4,6-TCP degradation rate of 0.10 mol/m3/d and a maximum power density of 2.6 W/m3 (11.7 A/m3) were achieved, 138 and 13 % improvements, respectively compared to the controls with no stimulation. Bacterial communities developed with the specific CPs under anaerobic/aerobic conditions as well as the stimulated biofilm shared some dominant genera and also exhibited great differences. These results provide the most convincing evidence to date that anaerobic/aerobic conditions affected CPs degradation with power generation from the biocathode systems, and using deliberate substrates can stimulate the microbial consortia and be potentially feasible for the selection of an appropriate microbial community for the target substrate (e.g. 2,4,6-TCP) degradation in the biocathode MFCs.  相似文献   

9.
Aims:  This paper investigates a selection-based acclimation strategy for improving the performance and stability of aerobic granules at a high chloroanilines loading.
Methods and Results:  The experiments were conducted in a sequencing airlift bioreactor (SABR) to develop aerobic granules fed with chloroanilines (ClA). The evolution of aerobic granulation was monitored using image analysis and scanning electron microscopy, and PCR–DGGE analysis of microbial community was performed. The sludge granulation was apparently developed by decreased settling time and gradual increased ClA loading to 0·8 kg m−3 day−1. A steady-state performance of the granular SABR was reached at last, as evidenced by biomass concentration of 6·3 g l−1 and constant ClA removal efficiency of 99·9%. The mature granules had a mean size of 1·55 mm, minimal settling velocity of 68·4 m h−1, specific ClA degradation rate of 0·181 g gVSS−1 day−1. Phylogenetic analysis of aerobic ClA-degrading granules confirmed the dominance of β - , γ -Proteobacteria and Flavobacteria.
Conclusions:  The chosen operating strategy involving step increase in ClA loading and enhancement of major selection pressures was successful in cultivating the aerobic ClA-degrading granules.
Significance and Impact of the Study:  This research could be helpful for improving the stability of aerobic granules via optimizing operating conditions and developing economic feasible full-scale granular bioreactor.  相似文献   

10.
从某化工厂排水沟底泥中取样,经2个月的富集驯化得到六氯苯好氧降解菌群。通过测定该微生物菌群在降解六氯苯过程中累积耗氧量、微生物生长曲线及Cl-浓度的变化,证明在好氧条件下该微生物菌群能够以六氯苯为唯一碳源和能源生长。当培养温度为30℃,pH为7.0时,该菌群能在18d内将无机盐培养基中浓度为4.5mg/L的六氯苯降解55%以上,降解速率达到137.5μg/(L.d)。对降解菌群提取总DNA,选择性扩增细菌16S rDNA片段,建立克隆文库。通过限制性内切酶(限制性内切酶HaeⅢ和RsaⅠ)分析,得到9种不同的谱型,其中3种谱型是主要谱型。对主要谱型的克隆子测序,结果表明,它们分别与Alcaligenes和Azospirillum菌属相似性最高。该菌群在去除环境中难降解的有机氯污染物方面具有应用前景。  相似文献   

11.
The metabolic diversity of microbial communities is fundamental for the multiple soil functions mediated by microorganisms. Community level physiological profiles (CLPPs) based on sole C source oxidation have been used as a fast and reproducible tool to study soil microbial functional diversity because the utilisation of available carbon is the key factor governing microbial growth in soil. Our aim was to assess the phylogenetic affiliation of the microorganisms responsible for C consumption after inoculating Biolog plates. For this purpose, two semi-arid Mediterranean forest soils with significantly different patterns of C consumption and microbial community structure were used. Following the inoculation of the Biolog plates, suspensions from seven wells were sampled after 1, 2 and 7 d of incubation. DNA was extracted and the microbial communities analysed by polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing of excised bands. Despite major differences in the microbial communities of the soils studied, their DGGE banding patterns after incubation were similar for all the analysed C source suspensions. Microorganisms belonging to beta-Proteobacteria (Ralstonia sp. and Burkholderia sp.) and alpha-Proteobacteria (Rhizobium sp.) were dominant. These opportunists had a competitive advantage under the conditions at which the CLPPs were analysed. This study reveals that significantly different CLPP patterns can be generated on the basis of only 3-4 genera, as reflected by PCR-DGGE analysis. Also for this reason, CLPPs based on incubations of soil suspensions should just be used as a screening method and always be accompanied by other techniques for community analysis.  相似文献   

12.
Reductive dehalogenation of polychlorinated biphenyls (PCBs) by indigenous dehalorespiring microorganisms in contaminated sediments may be enhanced via biostimulation by supplying hydrogen generated through the anaerobic corrosion of elemental iron added to the sediment. In this study, the effect of periodic amendment of sediment with various dosages of iron on the microbial community present in sediment was investigated using phospholipid fatty acid analysis (PLFA) over a period of 18 months. Three PCB-contaminated sediments (two freshwater lake sediments and one marine sediment) were used. Signature biomarker analysis of the microbial community present in all three sediments revealed the enrichment of Dehalococcoides species, the population of which was sustained for a longer period of time when the sediment microcosms were amended with the lower dosage of iron (0.01 g iron per g dry sediment) every 6 months as compared to the blank system (without iron). Lower microbial stress levels were reported for the system periodically amended with 0.01 g of iron per g dry sediment every 6 months, thus reducing the competition from other hydrogen-utilizing microorganisms like methanogens, iron reducers, and sulfate reducers. The concentration of hydrogen in the system was found to be an important factor influencing the shift in microbial communities in all sediments with time. Periodic amendment of sediment with larger dosages of iron every 3 months resulted in the early prevalence of Geobacteraceae and sulfate-reducing bacteria followed by methanogens. An average pH of 8.4 (range of 8.2–8.6) and an average hydrogen concentration of 0.75% (range of 0.3–1.2%) observed between 6 and 15 months of the study were found to be conducive to sustaining the population of Dehalococcoides species in the three sediments amended with 0.01 g iron per g dry sediment. Biostimulation of indigenous PCB dechlorinators by the periodic amendment of contaminated sediments with low dosages of iron metal may therefore be an effective technology for remediation of PCB-contaminated sediments.  相似文献   

13.
为了明确鸡粪好氧堆肥过程中细菌群落结构和功能的变化,采用高通量测序技术测定了好氧堆肥前、中、后3个时期样品的16S rRNA基因序列,并进行了生物信息学分析。结果表明, 3个堆肥阶段中仅有10%左右的分类操作单元(operational taxonomic units, OTUs)具有阶段特异性;不同发酵阶段细菌α多样性指数ACE、Chao1和Simpson均呈现先升高后降低的趋势,但各阶段间差异不显著(P<0.05)。3个发酵阶段优势菌门类相同,但丰度存在差异。线性判别分析[line discriminant analysis (LDA) effect size, LEfSe]法对细菌生物标志分析表明,从门到属水平共有49个物种,堆肥前期样品组中显著富集的物种最多,后期最少。原核分类群功能注释(functional annotation of prokaryotic taxa,FAPROTAX)对细菌功能多样性分析表明,堆肥前期细菌功能多样性最高,而随着发酵进行细菌功能富集程度增加、多样性降低。该研究为畜禽粪污好氧堆肥过程调控提供理论支撑和技术指导。  相似文献   

14.
AIMS: The objective of this study was to investigate the changes in the indigenous bacterial community structure for assessing the impact of biostimulation on spilled oil. METHODS AND RESULTS: Changes in the bacterial community structure were monitored by denaturing gradient gel electrophoresis (DGGE) and clone library methods based on 16S rRNA gene (rDNA) sequences. The results of DGGE, coupled with the use of the Shannon index and principal component analysis (PCA) and clone library analyses, were consistent. In the treated (fertilized) area, one operational taxonomic unit (OTU) became dominant during the fertilization period, and it was most closely related to Pseudomonas putida. CONCLUSIONS: The bacterial community structure in the treated area was markedly different from that in the control (non-fertilized) area during the fertilization period, but in the two areas it became similar at 14 weeks after the end of fertilization. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that the bacterial community structure was disrupted by the biostimulation treatment, but that it recovered immediately after the end of fertilization.  相似文献   

15.
[目的]解析中国传统豆瓣酱发酵过程中的微生物群落演替规律和理化代谢物质变化,探讨不同发酵阶段影响豆瓣酱风味的核心功能微生物.[方法]采用高通量测序解析豆瓣酱发酵过程中的微生物群落结构和演替,并跟踪检测发酵过程中的理化代谢物质,然后分析微生物群落和理化代谢物质变化之间的相关性,最后在体外分离核心微生物并对其功能特性进行验...  相似文献   

16.
We investigated a range of microbiological community assays performed on scrapes of biofilms formed on artificial diffusing substrates deployed in 8 streams in eastern Scotland, with a view to using them to characterize ecological response to stream water quality. The assays considered were: Multiplex Terminal Restriction Fragment Length Polymorphism or M-TRFLP (a molecular method), Phospholipid Fatty Acid or PLFA analysis (a biochemical method) and MICRORESP (a physiological method) alongside TDI, diatom species, and chlorophyll a content. Four of the streams were classified as of excellent status (3-6 μg/L Soluble Reactive Phosphorus (SRP)) with respect to soluble P content under the EU Water Framework Directive and four were of borderline good/moderate or moderate status (43-577 μg/L SRP). At each site, 3 replicates of 3 solute diffusion treatments were deployed in a Latin square design. Solute diffusion treatments were: KCl (as a control solute), N and P (to investigate the effect of nutrient enrichment), or the herbicide isoproturon (as a “high impact” control, which aimed to affect biofilm growth in a way detectable by all assays). Biofilms were sampled after 4 weeks deployment in a low flow period of early summer 2006.The chlorophyll a content of biofilms after 4 weeks was 2.0 ± 0.29 mg/m2 (mean ± se). Dry matter content was 16.0 ± 13.1 g/m2. The M-TRFLP was successfully used for generating community profiles of cyanobacteria, algae and bacteria and was much faster than diatom identification. The PFLA and TDI were successful after an increase in the sample size, due to low counts. The MICRORESP assays were often below or near detection limit. We estimated the per-sample times for the successful assays as follows: M-TRFLP: 20 min, PLFA 40 min, TDI 90 min. Using MANOVA on the first 5 principal co-ordinates, all the assays except MICRORESP showed significant differences between sites, but none of the assays showed a significant effect of either initial stream trophic status (as classified by the EU Water Framework Directive using chemical standards for soluble P), or of the diffusing solute treatment. Multiple Procrustes analysis on the ordination results showed that the diatom and M-TRFLP data sets hold distinct, though as yet unexplored, information about the ecological factors affecting stream biofilms. The diatom data were subjected to principal components analysis, to identify which taxa were more strongly influenced by site variables, trophic status or treatment effects. These were Acnanthes lanceolata, A. minutissimma, Nitzchia spp., Coccineis spp. and Navicula spp. Further experimentation and data analysis on a larger number of sites, to identify specific M-TRFLP bands that could be used as indicators linked to specific taxa, are desirable. Results highlight the need for a multifactorial approach to understanding controls on stream ecology.  相似文献   

17.
Illumina-based analysis of microbial community diversity   总被引:4,自引:0,他引:4  
Microbes commonly exist in milieus of varying complexity and diversity. Although cultivation-based techniques have been unable to accurately capture the true diversity within microbial communities, these deficiencies have been overcome by applying molecular approaches that target the universally conserved 16S ribosomal RNA gene. The recent application of 454 pyrosequencing to simultaneously sequence thousands of 16S rDNA sequences (pyrotags) has revolutionized the characterization of complex microbial communities. To date, studies based on 454 pyrotags have dominated the field, but sequencing platforms that generate many more sequence reads at much lower costs have been developed. Here, we use the Illumina sequencing platform to design a strategy for 16S amplicon analysis (iTags), and assess its generality, practicality and potential complications. We fabricated and sequenced paired-end libraries of amplified hyper-variable 16S rDNA fragments from sets of samples that varied in their contents, ranging from a single bacterium to highly complex communities. We adopted an approach that allowed us to evaluate several potential sources of errors, including sequencing artifacts, amplification biases, non-corresponding paired-end reads and mistakes in taxonomic classification. By considering each source of error, we delineate ways to make biologically relevant and robust conclusions from the millions of sequencing reads that can be readily generated by this technology.  相似文献   

18.
Molecular community analysis of microbial diversity   总被引:11,自引:0,他引:11  
New technologies that avoid the need for either gene amplification (e.g. microarrays) or nucleic acid extraction (e.g. in situ PCR) have recently been implemented in microbial ecology. Together with new approaches for culturing microorganisms and an increased understanding of the biases of molecular methods, these techniques form the most exciting advances in this field during the past year.  相似文献   

19.
Our previous study showed that an activated-sludge process broke down at the phenol-loading rate of 1.5 g l−1 day−1, when non-flocculating bacteria (called R6T and R10) overgrew the sludge, resulting in a sludge washout. In this study, we attempted to circumvent this breakdown problem by reclaiming the consortium structure. Activated sludge was fed phenol, and the phenol-loading rate was increased stepwise from 0.5 g l−1 day−1 to 1.0 g l−1 day−1 and then to 1.5 g l−1 day−1. Either galactose or glucose (at 0.5 g l−1 day−1) was also supplied to the activated sludge from the phenol-loading rate of 1.0 g l−1 day−1. Pure culture experiments have suggested galactose to be a preferential substrate for a floc-forming bacterium (R6F) that predominantly degrades phenol under low phenol-loading conditions. Supplying galactose allowed sustainment of the R6F population and suppression of the overgrowth of R6T and R10 at the phenol-loading rate of 1.5 g l−1 day−1. This measure allowed the activated-sludge process to treat phenol at a phenol-loading rate up to 1.5 g l−1 day−1, although it broke down at 2.0 g l−1 day−1. In contrast, supplying glucose reduced the R6F population and allowed the activated-sludge process to break down at the phenol-loading rate of 1.0 g l−1 day−1. This study demonstrated that reclamation of the activated-sludge consortium by selective biostimulation of the floc-forming population improved the phenol-treating ability of the process. Received: 13 January 2000 / Received revision: 10 March 2000 / Accepted: 7 April 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号