首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the ubiquitous presence of the COPI, COPII, and clathrin vesicle budding machineries in all eukaryotes, the organization of the secretory pathway in plants differs significantly from that in yeast and mammalian cells. Mobile Golgi stacks and the lack of both transitional endoplasmic reticulum (ER) and a distinct ER-to-Golgi intermediate compartment are the most prominent distinguishing morphological features of the early secretory pathway in plants. Although the formation of COPI vesicles at periphery of Golgi cisternae has been demonstrated in plants, exit from the ER has been difficult to visualize, and the spatial relationship of this event is now a matter of controversy. Using tobacco (Nicotiana tabacum) BY-2 cells, which represent a highly active secretory system, we have used two approaches to investigate the location and dynamics of COPII binding to the ER and the relationship of these ER exit sites (ERES) to the Golgi apparatus. On the one hand, we have identified endogenous COPII using affinity purified antisera generated against selected COPII-coat proteins (Sar1, Sec13, and Sec23); on the other hand, we have prepared a BY-2 cell line expressing Sec13:green fluorescent protein (GFP) to perform live cell imaging with red fluorescent protein-labeled ER or Golgi stacks. COPII binding to the ER in BY-2 cells is visualized as fluorescent punctate structures uniformly distributed over the surface of the ER, both after antibody staining as well as by Sec13:GFP expression. These structures are smaller and greatly outnumber the Golgi stacks. They are stationary, but have an extremely short half-life (<10 s). Without correlative imaging data on the export of membrane or lumenal ER cargo it was not possible to equate unequivocally these COPII binding loci with ERES. When a GDP-fixed Sar1 mutant is expressed, ER export is blocked and the visualization of COPII binding is perturbed. On the other hand, when secretion is inhibited by brefeldin A, COPII binding sites on the ER remain visible even after the Golgi apparatus has been lost. Live cell imaging in a confocal laser scanning microscope equipped with spinning disk optics allowed us to investigate the relationship between mobile Golgi stacks and COPII binding sites. As they move, Golgi stacks temporarily associated with COPII binding sites at their rims. Golgi stacks were visualized with their peripheries partially or fully occupied with COPII. In the latter case, Golgi stacks had the appearance of a COPII halo. Slow moving Golgi stacks tended to have more peripheral COPII than faster moving ones. However, some stationary Golgi stacks entirely lacking COPII were also observed. Our results indicate that, in a cell type with highly mobile Golgi stacks like tobacco BY-2, the Golgi apparatus is not continually linked to a single ERES. By contrast, Golgi stacks associate intermittently and sometimes concurrently with several ERES as they move.  相似文献   

2.
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs). We have demonstrated recently that vacuolar sorting receptor (VSR) proteins are concentrated on PVCs. In this study, we generated transgenic Nicotiana tabacum (tobacco) BY-2 cell lines expressing two yellow fluorescent protein (YFP)-fusion reporters that mark PVC and Golgi organelles. Both transgenic cell lines exhibited typical punctate YFP signals corresponding to distinct PVC and Golgi organelles because the PVC reporter colocalized with VSR proteins, whereas the Golgi marker colocalized with mannosidase I in confocal immunofluorescence. Brefeldin A induced the YFP-labeled Golgi stacks but not the YFP-marked PVCs to form typical enlarged structures. By contrast, wortmannin caused YFP-labeled PVCs but not YFP-labeled Golgi stacks to vacuolate. VSR antibodies labeled multivesicular bodies (MVBs) on thin sections prepared from high-pressure frozen/freeze substituted samples, and the enlarged PVCs also were indentified as MVBs. MVBs were further purified from BY-2 cells and found to contain VSR proteins via immunogold negative staining. Similar to YFP-labeled Golgi stacks, YFP-labeled PVCs are mobile organelles in BY-2 cells. Thus, we have unequivocally identified MVBs as PVCs in N. tabacum BY-2 cells. Uptake studies with the styryl dye FM4-64 strongly indicate that PVCs also lie on the endocytic pathway of BY-2 cells.  相似文献   

3.
Tse YC  Lo SW  Hillmer S  Dupree P  Jiang L 《Plant physiology》2006,142(4):1442-1459
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs) in the secretory pathway. Using transgenic tobacco (Nicotiana tabacum) Bright-Yellow-2 (BY-2) cells expressing membrane-anchored yellow fluorescent protein (YFP) reporters marking Golgi or PVCs, we have recently demonstrated that PVCs are mobile multivesicular bodies defined by vacuolar sorting receptor proteins. Here, we demonstrate that Golgi and PVCs have different sensitivity in response to brefeldin A (BFA) treatment in living tobacco BY-2 cells. BFA at low concentrations (5-10 microg mL(-1)) induced YFP-marked Golgi stacks to form both endoplasmic reticulum-Golgi hybrid structures and BFA-induced aggregates, but had little effect on YFP-marked PVCs in transgenic BY-2 cells at both confocal and immunogold electron microscopy levels. However, BFA at high concentrations (50-100 microg mL(-1)) caused both YFP-marked Golgi stacks and PVCs to form aggregates in a dose- and time-dependent manner. Normal Golgi or PVC signals can be recovered upon removal of BFA from the culture media. Confocal immunofluorescence and immunogold electron microscopy studies with specific organelle markers further demonstrate that the PVC aggregates are distinct, but physically associated, with Golgi aggregates in BFA-treated cells and that PVCs might lose their internal vesicle structures at high BFA concentration. In addition, vacuolar sorting receptor-marked PVCs in root-tip cells of tobacco, pea (Pisum sativum), mung bean (Vigna radiata), and Arabidopsis (Arabidopsis thaliana) upon BFA treatment are also induced to form similar aggregates. Thus, we have demonstrated that the effects of BFA are not limited to endoplasmic reticulum and Golgi, but extend to PVC in the endomembrane system, which might provide a quick tool for distinguishing Golgi from PVC for its identification and characterization, as well as a possible new tool in studying PVC-mediated protein traffic in plant cells.  相似文献   

4.
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.  相似文献   

5.
Miao Y  Yan PK  Kim H  Hwang I  Jiang L 《Plant physiology》2006,142(3):945-962
We have previously demonstrated that vacuolar sorting receptor (VSR) proteins are concentrated on prevacuolar compartments (PVCs) in plant cells. PVCs in tobacco (Nicotiana tabacum) BY-2 cells are multivesicular bodies (MVBs) as defined by VSR proteins and the BP-80 reporter, where the transmembrane domain (TMD) and cytoplasmic tail (CT) sequences of BP-80 are sufficient and specific for correct targeting of the reporter to PVCs. The genome of Arabidopsis (Arabidopsis thaliana) contains seven VSR proteins, but little is known about their individual subcellular localization and function. Here, we study the subcellular localization of the seven Arabidopsis VSR proteins (AtVSR1-7) based on the previously proven hypothesis that the TMD and CT sequences correctly target individual VSR to its final destination in transgenic tobacco BY-2 cells. Toward this goal, we have generated seven chimeric constructs containing signal peptide (sp) linked to green fluorescent protein (GFP) and TMD/CT sequences (sp-GFP-TMD/CT) of the seven individual AtVSR. Transgenic tobacco BY-2 cell lines expressing these seven sp-GFP-TMD-CT fusions all exhibited typical punctate signals colocalizing with VSR proteins by confocal immunofluorescence. In addition, wortmannin caused the GFP-marked prevacuolar organelles to form small vacuoles, and VSR antibodies labeled these enlarged MVBs in transgenic BY-2 cells. Wortmannin also caused VSR-marked PVCs to vacuolate in other cell types, including Arabidopsis, rice (Oryza sativa), pea (Pisum sativum), and mung bean (Vigna radiata). Therefore, the seven AtVSRs are localized to MVBs in tobacco BY-2 cells, and wortmannin-induced vacuolation of PVCs is a general response in plants.  相似文献   

6.
Xyloglucan is the dominant hemicellulosic polysaccharide of the primary cell wall of dicotyledonous plants that plays a key role in plant development. It is well established that xyloglucan is assembled within Golgi stacks and transported in Golgi-derived vesicles to the cell wall. It is also known that the biosynthesis of xyloglucan requires the action of glycosyltransferases including α-1,6-xylosyltransferase, β-1,2-galactosyltransferase and α-1,2-fucosyltransferase activities responsible for the addition of xylose, galactose and fucose residues to the side chains. There is, however, a lack of knowledge on how these enzymes are distributed within subcompartments of Golgi stacks. We have undertaken a study aiming at mapping these glycosyltransferases within Golgi stacks using immunogold-electron microscopy. To this end, we generated transgenic lines of tobacco (Nicotiana tabacum) BY-2 suspension-cultured cells expressing either the α-1,6-xylosyltransferase, AtXT1, the β-1,2-galactosyltransferase, AtMUR3, or the α-1,2-fucosyltransferase AtFUT1 of Arabidopsis thaliana fused to green-fluorescent protein (GFP). Localization of the fusion proteins within the endomembrane system was assessed using confocal microscopy. Additionally, tobacco cells were high pressure-frozen/freeze-substituted and subjected to quantitative immunogold labelling using anti-GFP antibodies to determine the localization patterns of the enzymes within subtypes of Golgi cisternae. The data demonstrate that: (i) all fusion proteins, AtXT1-GFP, AtMUR3-GFP and AtFUT1-GFP are specifically targeted to the Golgi apparatus; and (ii) AtXT1-GFP is mainly located in the cis and medial cisternae, AtMUR3-GFP is predominantly associated with medial cisternae and AtFUT1-GFP mostly detected over trans cisternae suggesting that initiation of xyloglucan side chains occurs in early Golgi compartments in tobacco cells.  相似文献   

7.
We have shown the localization and mobilization of modified green fluorescent proteins (GFPs) with various signals in different compartments in a vacuolar-sorting system of tobacco BY-2 cells. In contrast to the efficient secretion of GFP from the transformed cells expressing SP-GFP composed of a signal peptide and GFP, accumulation of GFP in the vacuoles was observed in the cells expressing SP-GFP fused with the C-terminal peptide of pumpkin 2S albumin. This indicated that this peptide is sufficient for vacuolar targeting. Interestingly, the fluorescence in the vacuoles disappeared sharply at 7 d after inoculation of the cells, but it appeared again after re-inoculation into a new culture medium. When SP-GFP was fused with the region, termed PV72C, including a transmembrane domain and a cytosolic tail of a vacuolar-sorting receptor PV72, GFP-PV72C was detected in the Golgi-complex-like small particles. Prolonged culture showed that GFP-PV72C that reached the prevacuolar compartments was cleaved off the PV72C region to produce GFP, that arrived at the vacuoles to be diffused. These findings suggested that the vacuolar-sorting receptor might be recycled between the Golgi complex and prevacuolar compartments.  相似文献   

8.
To date, the lack of a method for inducing plant cells and their Golgi stacks to differentiate in a synchronous manner has made it difficult to characterize the nature and extent of Golgi retailoring in biochemical terms. Here we report that auxin deprivation can be used to induce a uniform population of suspension-cultured tobacco (Nicotiana tabacum cv BY-2) cells to differentiate synchronously during a 4-d period. Upon removal of auxin, the cells stop dividing, undergo elongation, and differentiate in a manner that mimics the formation of slime-secreting epidermal and peripheral root-cap cells. The morphological changes to the Golgi apparatus include a proportional increase in the number of trans-Golgi cisternae, a switch to larger-sized secretory vesicles that bud from the trans-Golgi cisternae, and an increase in osmium staining of the secretory products. Biochemical alterations include an increase in large, fucosylated, mucin-type glycoproteins, changes in the types of secreted arabinogalactan proteins, and an increase in the amounts and types of molecules containing the peripheral root-cap-cell-specific epitope JIM 13. Taken together, these findings support the hypothesis that auxin deprivation can be used to induce tobacco BY-2 cells to differentiate synchronously into mucilage-secreting cells.  相似文献   

9.
The bean lectin phytohemagglutinin (PHA) was expressed in transgenic suspension-cultured BY-2 tobacco cells simultaneously with another recombinant vacuolar protein, the sweet potato sporamin. In contrast to previous observations in different transgenic plant systems when expressed in BY-2 tobacco cells, phytohemagglutinin is mostly but not exclusively targeted to the vacuole. Indeed, a small amount of recombinant phytohemagglutinin is secreted into the culture medium of tobacco cells. Furthermore part of this extracellular phytohemagglutinin has no lectin activity and presents an abnormal glycosylation consistent with higher accessibility of glycans N-linked to these extracellular phytohemagglutinin forms. Phytohemagglutinin secretion occurs regardless of recombinant protein expression level. Consequently, missorting in this case is due to an abnormal phytohemagglutinin conformation or oligomerization rather than to receptor saturation. The treatment of BY-2 cells with drugs, such as monensin and wortmannin, increases even more the transport of phytohemagglutinin to the cell surface through a general inhibition of the sorting mechanisms of vacuolar proteins. The sensitivity to wortmannin is similar for the sorting of phytohemagglutinin and endogenous tobacco chitinase and β-1,3-glucanase, suggesting that phytohemagglutinin and COOH-terminal propeptide mediated vacuolar sorting share similar mechanisms. A characterization of glycans N-linked to extracellular phytohemagglutinin secreted by monensin- or wortmannin-treated transgenic tobacco cells illustrates that in contrast with monensin, wortmannin completely inhibits the sorting of vacuolar proteins without having any effect on the efficiency of Golgi processing enzymes.  相似文献   

10.
The effects of 1-butanol on the organelles of the early secretory pathway in tobacco BY-2 cells have been examined, because this primary alcohol is known to interfere with phospholipase D an enzyme whose activity contributes to COPI-vesicle formation. Since the fungal lactone Brefeldin A (BFA) also prevents COPI-vesicle production by the Golgi apparatus, the sequential and simultaneous application of these two inhibitors was also investigated. 1-Butanol, but not 2-butanol caused rapid changes in the morphology of the BY-2 Golgi apparatus resulting in extended curved cisternae. By contrast with BFA-treated cells, ER cisternae did not attach laterally to these structures, and ER-Golgi fusion hybrids were not obtained with 1-butanol. However, immunofluorescence microscopy revealed that 1-butanol, like BFA, elicited the release of the GTPase ARF1 from Golgi membranes. Washing out the butanol resulted in re-attachment of ARF1 and a recovery of Golgi stack morphology. BY-2 cells treated sequentially with 1-butanol then BFA (each 30 min), did not reveal any BFA-typical changes in Golgi structure. Cells treated first with BFA, then 1-butanol retained the typical ER-Golgi sandwich morphology induced by BFA, but were larger. When 1-butanol and BFA were added together (for a 30 min period), even larger Golgi aggregates were formed with, again, no ER attachments. Thus, although both inhibitors had the Golgi apparatus as their principle cytological target and both interfere with coatomer attachment, they differ in their ability to induce an interaction with the ER.  相似文献   

11.
Brefeldin A (BFA) causes a block in the secretory system of eukaryotic cells by inhibiting vesicle formation at the Golgi apparatus. Although this toxin has been used in many studies, its effects on plant cells are still shrouded in controversy. We have reinvestigated the early responses of plant cells to BFA with novel tools, namely, tobacco Bright Yellow 2 (BY-2) suspension-cultured cells expressing an in vivo green fluorescent protein-Golgi marker, electron microscopy of high-pressure frozen/freeze-substituted cells, and antisera against Atgamma-COP, a component of COPI coats, and AtArf1, the GTPase necessary for COPI coat assembly. The first effect of 10 microg/mL BFA on BY-2 cells was to induce in <5 min the complete loss of vesicle-forming Atgamma-COP from Golgi cisternae. During the subsequent 15 to 20 min, this block in Golgi-based vesicle formation led to a series of sequential changes in Golgi architecture, the loss of distinct Golgi stacks, and the formation of an endoplasmic reticulum (ER)-Golgi hybrid compartment with stacked domains. These secondary effects appear to depend in part on stabilizing intercisternal filaments and include the continued maturation of cis- and medial cisternae into trans-Golgi cisternae, as predicted by the cisternal progression model, the shedding of trans-Golgi network cisternae, the fusion of individual Golgi cisternae with the ER, and the formation of large ER-Golgi hybrid stacks. Prolonged exposure of the BY-2 cells to BFA led to the transformation of the ER-Golgi hybrid compartment into a sponge-like structure that does not resemble normal ER. Thus, although the initial effects of BFA on plant cells are the same as those described for mammalian cells, the secondary and tertiary effects have drastically different morphological manifestations. These results indicate that, despite a number of similarities in the trafficking machinery with other eukaryotes, there are fundamental differences in the functional architecture and properties of the plant Golgi apparatus that are the cause for the unique responses of the plant secretory pathway to BFA.  相似文献   

12.
We cloned a novel prolyl 4-hydroxylase (PH; EC 1.14.11.2) homolog cDNA from tobacco (Nicotiana tabacum) BY-2 cells based on expression sequence tag information. Like other PHs, this tobacco PH polypeptide has two conserved histidine residues, and it comprises 286 amino acids with a calculated molecular mass of 32 kDa. Interestingly, this protein and homologs in Arabidopsis and rice have predicted transmembrane sequences in their N-terminal regions. This PH homolog was expressed in BY-2 cells as a His-tagged protein, and the expressed protein showed PH activity. Incubation of membranes with high salt, urea, and protease with or without detergents indicated that this protein is an integral membrane protein with a type II configuration. Its membrane-anchored nature is specific for plants because no integral membrane PH has been found in animals. A membrane fractionation study and immunocytochemical studies indicate that this protein localizes in both the endoplasmic reticulum (ER) and Golgi apparatus. Analysis of this protein fused to green fluorescent protein indicated that basic amino acids in the cytoplasmic, N-terminal region of the PH play a role in its export from the ER.  相似文献   

13.
The cnidarian Hydra is an important model organism to study pattern formation and tem cell differentiation. In the past, however, it has been difficult to study gene function in Hydra because the animals have hot been accessible to gene transfection studies, we have now developed a method to transiently express GFP-tagged proteins in Hydra using a green fluorescent protein (GFP) expression plasmid under the control of the Hydra actin promoter and a particle gun to introduce it into Hydra cell nuclei. We achieve strong transient GFP expression in a small but reproducible number of epithelial and interstitial cells. Implications for the use of this method to carry out single cell assays with GFP-tagged Hydra proteins are discussed.  相似文献   

14.
15.
Oryzalin is a much-used pre-emergence herbicide which causes microtubules (Mt) to depolymerize. Here, we document that this dinitroaniline herbicide also leads to characteristic changes in the morphology of the endoplasmic reticulum (ER) and Golgi apparatus. These effects, which are reversible upon washing out the herbicide, are already elicited at low concentrations (2 μM) and become most pronounced at 20 μM. For our studies, we have employed roots of Arabidopsis thaliana, tobacco leaf epidermal cells, and BY-2 suspension cultures, all expressing the luminal ER marker GFP::HDEL. In all cell types, the typical cortical network of the ER assumed a pronounced nodulated morphology with increasing oryzalin concentrations. This effect was enhanced through subsequent application of brefeldin A (BFA). Thin sections of Arabidopsis roots observed in the electron microscope revealed the nodules to consist of a mass of anastomosing ER tubules. Oryzalin also caused the cisternae in Golgi stacks to increase in number but reduced their diameter. Oryzalin retarded ER mobility but did not prevent latrunculin B-induced clustering of Golgi stacks on islands of cisternal ER. While the mechanism underlying these changes in endomembranes remains unknown, it is specific for oryzalin since these effects were not elicited with other Mt-depolymerizing herbicides, e.g., trifluralin, amiprophosmethyl, or colchicine.  相似文献   

16.
G-rich is a Drosophila melanogaster selenoprotein, which is a homologue of human and mouse SelK. Subcellular localization analysis using GFP-tagged G-rich showed that G-rich was localized in the Golgi apparatus. The fusion protein was co-localized with the Golgi marker proteins but not with an endoplasmic reticulum (ER) marker protein in Drosophila SL2 cells. Bioinformatic analysis of G-rich suggests that this protein is either type II or type III transmembrane protein. To determine the type of transmembrane protein experimentally, GFP-G-rich in which GFP was tagged at the N-terminus of G-rich, or G-rich-GFP in which GFP was tagged at the C-terminus of G-rich, were expressed in SL2 cells. The tagged proteins were then digested with trypsin, and analyzed by Western blot analysis. The results showed that the C-terminus of the G-rich protein was exposed to the cytoplasm indicating it is a type III microsomal membrane protein. G-rich is the first selenoprotein identified in the Golgi apparatus.  相似文献   

17.
Sucrose plays an important role in several cellular processes since it is a general source of metabolic energy, serves as a precursor for starch and cellulose synthesis, and is a metabolic starting point for carboxylate- and amino acid synthesis. While plant vacuole is the main cellular storage pool, where sucrose accumulates to high concentrations, only a small number of vacuolar sugar transporters have been identified and characterized to date. We initially identified a vacuolar sucrose transporter (NtSUT4) from tobacco BY-2 cells and established transgenic tobacco BY-2 cell lines that overexpress NtSUT4-GFP (BY-SUTG cells). Using a model system for synchronous cell elongation in miniprotoplasts (evacuolated cells) prepared from tobacco BY-2 cells, we found that NtSUT4-GFP overexpression inhibited cell growth towards the cell major axis. Moreover, under the same conditions, we found that the cell walls were well stained by calcofluor in BY-SUTG cells than in wild type BY-2 cells. These results suggest that NtSUT4 is involved in cell shape via sucrose homeostasis in plant cells.  相似文献   

18.
Bolduc N  Ouellet M  Pitre F  Brisson LF 《Planta》2003,216(3):377-386
To date, few homologues of animal programmed cell death (PCD) regulators have been identified in plants. Among these is the plant Bax Inhibitor-1 (BI-1) protein, which possesses, like its human counterpart, the ability to suppress Bax-induced lethality in yeast cells. As the role of BI-1 in the regulation of plant PCD remains to be elucidated, we cloned BnBI-1 and NtBI-1 from cDNA libraries of oilseed rape ( Brassica napus L.) and tobacco ( Nicotiana tabacum L.). The analysis of the deduced amino acid sequences of BnBI-1 and NtBI-1 indicated that these proteins share a relatively high level of identity with other plant BI-1 proteins (73-95%) as well as with animal BI-1 proteins (26-42%). Comparative analysis with other available plant BI-1 proteins allowed the establishment of a structural model presenting seven transmembrane domains. Moreover, transient co-transfection of Bax with BnBI-1 or NtBI-1 in human embryonic kidney 293 cells revealed that both proteins can substantially inhibit apoptosis induced by Bax overexpression. Localization studies were also conducted using stable transformation of tobacco BY-2 cells and Saccharomyces cerevisiae, or transient expression in tobacco leaves, with the fusion protein BnBI-1GFP under control of the cauliflower mosaic virus 35S promoter. All transformants showed a fluorescence pattern of distribution typical of an endoplasmic reticulum (ER) protein. Results from differential permeabilization experiments in BY-2 cells expressing BnBI-1GFP also showed that the C-terminus is located on the cytosolic side of the ER. Taken altogether, our results suggest that BI-1 is evolutionarily conserved and could act as a key regulator of a death pathway common to plants and animals.  相似文献   

19.
The inhibition of elicitor-induced plant defense responses by the protein kinase inhibitors K252a and staurosporine indicates that defense responses require protein phosphorylation. We isolated a cDNA clone encoding Nicotiana tabacum lectin-like receptor protein kinase 1 (NtlecRK1), an elicitor-responsive gene; in tobacco bright yellow (BY-2) cells by a differential display method. NtlecRK forms a gene family with at least three members in tobacco. All three NtlecRK genes potentially encode the N-terminal legume lectin domain, transmembrane domain and C-terminal Ser/Thr-type protein kinase domain. Green fluorescent protein (GFP) fusion showed that the NtlecRK1 protein was located on the plasma membrane. In addition, NtlecRK1 and 3 were responsive to INF1 elicitin and the bacterial elicitor harpin. These results indicate that NtlecRKs are membrane-located protein kinases that are induced during defense responses in BY-2 cells.  相似文献   

20.
Xylosyltransferase I (XT-I) catalyzes the transfer of xylose from UDP-xylose to serine residues in proteoglycan core proteins. This is the first and apparently rate-limiting step in the biosynthesis of the tetrasaccharide linkage region in glycosaminoglycan-containing proteoglycans. The XYLT-II gene codes for a highly homologous protein, but its physiological function is not yet known. Here we present for the first time the construction of a vector encoding the full-length GFP-tagged human XT-I and the recombinant expression of the active enzyme in mammalian cells. We expressed XT-I-GFP and various GFP-tagged XT-I and XT-II mutants with C-terminal truncations and deletions in HEK-293 and SaOS-2 cells in order to investigate the intracellular localization of XT-I and XT-II. Immunofluorescence analysis showed a distinct perinuclear pattern of XT-I-GFP and XT-II-GFP similar to that of alpha-mannosidase II, which is a known enzyme of the Golgi cisternae. Furthermore, a co-localization of native human XT-I and alpha-mannosidase II could also be demonstrated in untransfected cells. Using brefeldin A, we could also show that both xylosyltransferases are resident in the early cisternae of the Golgi apparatus. For its complete Golgi retention, XT-I requires the N-terminal 214 amino acids. Unlike XT-I, for XT-II, the first 45 amino acids are sufficient to target and retain the GFP reporter in the Golgi compartment. Here we show evidence that the stem regions were indispensable for Golgi localization of XT-I and XT-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号