首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L A Kalish 《Biometrics》1990,46(2):493-499
The standard estimator of the common odds ratio for pair-matched case-control studies, the stratified estimate, is consistent but it ignores all information from the concordant pairs. At the other extreme, the pooled estimator is more efficient as it uses all the data, but is not consistent. In order to trade between bias and precision, Liang and Zeger (1988, Biometrics 44, 1145-1156) proposed an estimator that is a compromise between the stratified and pooled estimates. In the current paper, the possibility of optimizing the trade-off is explored. Specifically, the family of weighted averages of the stratified and pooled estimates is considered, and the weight that minimizes an asymptotic approximation of mean squared error is derived. In practice, the optimal weight must be estimated from the data so that the estimator is only approximately optimal. Small-sample properties are evaluated via simulations.  相似文献   

2.
It is not uncommon that we may encounter a randomized clinical trial (RCT) in which there are confounders which are needed to control and patients who do not comply with their assigned treatments. In this paper, we concentrate our attention on interval estimation of the proportion ratio (PR) of probabilities of response between two treatments in a stratified noncompliance RCT. We have developed and considered five asymptotic interval estimators for the PR, including the interval estimator using the weighted-least squares (WLS) estimator, the interval estimator using the Mantel-Haenszel type of weight, the interval estimator derived from Fieller's Theorem with the corresponding WLS optimal weight, the interval estimator derived from Fieller's Theorem with the randomization-based optimal weight, and the interval estimator based on a stratified two-sample proportion test with the optimal weight suggested elsewhere. To evaluate and compare the finite sample performance of these estimators, we apply Monte Carlo simulation to calculate the coverage probability and average length in a variety of situations. We discuss the limitation and usefulness for each of these interval estimators, as well as include a general guideline about which estimators may be used for given various situations.  相似文献   

3.
In this paper, a two‐phase sampling estimator for a stratified population mean using two auxiliary variables x and z is considered when the stratum mean of x is unknown but that of z is known. The suggested estimator under its optimal condition is found to be more efficient than the one using only x.  相似文献   

4.
Matsui S 《Biometrics》2005,61(3):816-823
This article develops methods for stratified analyses of additive or multiplicative causal effect on binary outcomes in randomized trials with noncompliance. The methods are based on a weighted estimating function for an unbiased estimating function under randomization in each stratum. When known weights are used, the derived estimator is a natural extension of the instrumental variable estimator for stratified analyses, and test-based confidence limits are solutions of a quadratic equation in the causal parameter. Optimal weights that maximize asymptotic efficiency incorporate variability in compliance aspects across strata. An assessment based on asymptotic relative efficiency shows that a substantial enhancement in efficiency can be gained by using optimal weights instead of conventional ones, which do not incorporate the variability in compliance aspects across strata. Application to a field trial for coronary heart disease is provided.  相似文献   

5.
C R Weinberg 《Biometrics》1985,41(1):117-127
In a study designed to assess the relationship between a dichotomous exposure and the eventual occurrence of a dichotomous outcome, frequency matching has been proposed as a way to balance the exposure cohorts with respect to the sampling distribution of potential confounding factors. This paper discusses the pooled estimator for the log relative risk, and provides an estimator for its variance which takes into account the dependency in the pooled outcomes induced by frequency matching. The pooled estimator has asymptotic relative efficiency less than but close to 1, relative to the usual, inverse variance weighted, stratified estimator. Simulations suggest, however, that the pooled estimator is likely to outperform the stratified estimator when samples are of moderate size. This estimator carries the added advantage that it consistently estimates a meaningful population parameter under heterogeneity of the relative risk across strata.  相似文献   

6.
K Y Liang 《Biometrics》1987,43(2):289-299
A class of estimating functions is proposed for the estimation of multivariate relative risk in stratified case-control studies. It reduces to the well-known Mantel-Haenszel estimator when there is a single binary risk factor. Large-sample properties of the solutions to the proposed estimating equations are established for two distinct situations. Efficiency calculations suggest that the proposed estimators are nearly fully efficient relative to the conditional maximum likelihood estimator for the parameters considered. Application of the proposed method to family data and longitudinal data, where the conditional likelihood approach fails, is discussed. Two examples from case-control studies and one example from a study on familial aggregation are presented.  相似文献   

7.
Schwarz CJ  Andrews M  Link MR 《Biometrics》1999,55(4):1014-1021
The Petersen estimator estimator of abundance can be biased when the assumption of homogeneous capture probability or homogeneous recapture probability is violated. Often this heterogeneity is related to the time or place of capture or recapture, and if these can be stratified, the stratified Petersen estimator reduces the bias caused by this heterogeneity. In some experiments, not all the recovered tagged animals can be examined, and only a subsample has its stratum of release and recovery determined. We develop methods for this modified experiment and apply them to estimate the number of salmon returning to spawn in a river in British Columbia, Canada.  相似文献   

8.
In this article, the spatial statistic known as the K function is adapted for temporal processes and patterns. The (optimal) K-function estimator is used in a testing procedure to determine whether behavior patterns of exposed rats versus control rats are different. Specifically, the temporal analogue to the K function is given and an approximately optimal estimator is developed. Next, a testing procedure, to determine whether a group of point patterns is generated from complete temporal randomness, is given. Finally, a testing procedure, to compare pairwise two groups of point patterns to each other, is given. The testing procedures are illustrated with rat-behavior data from both a control-control experiment as well as an exposed-control experiment, where in the latter case a difference in behavior is known to exist.  相似文献   

9.
Wei G  Schaubel DE 《Biometrics》2008,64(3):724-732
Summary .   Often in medical studies of time to an event, the treatment effect is not constant over time. In the context of Cox regression modeling, the most frequent solution is to apply a model that assumes the treatment effect is either piecewise constant or varies smoothly over time, i.e., the Cox nonproportional hazards model. This approach has at least two major limitations. First, it is generally difficult to assess whether the parametric form chosen for the treatment effect is correct. Second, in the presence of nonproportional hazards, investigators are usually more interested in the cumulative than the instantaneous treatment effect (e.g., determining if and when the survival functions cross). Therefore, we propose an estimator for the aggregate treatment effect in the presence of nonproportional hazards. Our estimator is based on the treatment-specific baseline cumulative hazards estimated under a stratified Cox model. No functional form for the nonproportionality need be assumed. Asymptotic properties of the proposed estimators are derived, and the finite-sample properties are assessed in simulation studies. Pointwise and simultaneous confidence bands of the estimator can be computed. The proposed method is applied to data from a national organ failure registry.  相似文献   

10.
Fewster RM 《Biometrics》2011,67(4):1518-1531
Summary In spatial surveys for estimating the density of objects in a survey region, systematic designs will generally yield lower variance than random designs. However, estimating the systematic variance is well known to be a difficult problem. Existing methods tend to overestimate the variance, so although the variance is genuinely reduced, it is over‐reported, and the gain from the more efficient design is lost. The current approaches to estimating a systematic variance for spatial surveys are to approximate the systematic design by a random design, or approximate it by a stratified design. Previous work has shown that approximation by a random design can perform very poorly, while approximation by a stratified design is an improvement but can still be severely biased in some situations. We develop a new estimator based on modeling the encounter process over space. The new “striplet” estimator has negligible bias and excellent precision in a wide range of simulation scenarios, including strip‐sampling, distance‐sampling, and quadrat‐sampling surveys, and including populations that are highly trended or have strong aggregation of objects. We apply the new estimator to survey data for the spotted hyena (Crocuta crocuta) in the Serengeti National Park, Tanzania, and find that the reported coefficient of variation for estimated density is 20% using approximation by a random design, 17% using approximation by a stratified design, and 11% using the new striplet estimator. This large reduction in reported variance is verified by simulation.  相似文献   

11.
Otto SP  Jones CD 《Genetics》2000,156(4):2093-2107
Recent studies have begun to reveal the genes underlying quantitative trait differences between closely related populations. Not all quantitative trait loci (QTL) are, however, equally likely to be detected. QTL studies involve a limited number of crosses, individuals, and genetic markers and, as a result, often have little power to detect genetic factors of small to moderate effects. In this article, we develop an estimator for the total number of fixed genetic differences between two parental lines. Like the Castle-Wright estimator, which is based on the observed segregation variance in classical crossbreeding experiments, our QTL-based estimator requires that a distribution be specified for the expected effect sizes of the underlying loci. We use this expected distribution and the observed mean and minimum effect size of the detected QTL in a likelihood model to estimate the total number of loci underlying the trait difference. We then test the QTL-based estimator and the Castle-Wright estimator in Monte Carlo simulations. When the assumptions of the simulations match those of the model, both estimators perform well on average. The 95% confidence limits of the Castle-Wright estimator, however, often excluded the true number of underlying loci, while the confidence limits for the QTL-based estimator typically included the true value approximately 95% of the time. Furthermore, we found that the QTL-based estimator was less sensitive to dominance and to allelic effects of opposite sign than the Castle-Wright estimator. We therefore suggest that the QTL-based estimator be used to assess how many loci may have been missed in QTL studies.  相似文献   

12.
The estimation of the unknown parameters in the stratified Cox's proportional hazard model is a typical example of the trade‐off between bias and precision. The stratified partial likelihood estimator is unbiased when the number of strata is large but suffer from being unstable when many strata are non‐informative about the unknown parameters. The estimator obtained by ignoring the heterogeneity among strata, on the other hand, increases the precision of estimates although pays the price for being biased. An estimating procedure, based on the asymptotic properties of the above two estimators, serving to compromise between bias and precision is proposed. Two examples in a radiosurgery for brain metastases study provide some interesting demonstration of such applications.  相似文献   

13.
Shih JH 《Biometrics》1999,55(4):1156-1161
We propose a class of permutation tests for stratified survival data. The tests are derived using the framework of Fay and Shih (1998, Journal of the American Statistical Association 93, 387-396), which creates tests by permuting scores based on a functional of estimated distribution functions. Here the estimated distribution function for each possibly right-, left-, or interval-censored observation is based on a shrinkage estimator similar to the nonparametric empirical estimator of Ghosh, Lahiri, and Tiwari (1989, Communications in Statistics--Theory and Methods 18, 121-146), and permutation is carried out within strata. The proposed test with a weighted Mann-Whitney functional is similar to the permutation form of the stratified log-rank test when there is a large strata effect or the sample size in each stratum is large and is similar to the permutation form of the ordinary log-rank test when there is little strata effect. Thus, the proposed test unifies the advantages of both the stratified and ordinary log-rank tests. By changing the functional, we may obtain a stratified Prentice-Wilcoxon test or a difference in means test with similar unifying properties. We show through simulations the advantage of the proposed test over existing tests for uncensored and right-censored data.  相似文献   

14.
In some cases model-based and model-assisted inferences canlead to very different estimators. These two paradigms are notso different if we search for an optimal strategy rather thanjust an optimal estimator, a strategy being a pair composedof a sampling design and an estimator. We show that, under alinear model, the optimal model-assisted strategy consists ofa balanced sampling design with inclusion probabilities thatare proportional to the standard deviations of the errors ofthe model and the Horvitz–Thompson estimator. If the heteroscedasticityof the model is 'fully explainable’ by the auxiliary variables,then this strategy is also optimal in a model-based sense. Moreover,under balanced sampling and with inclusion probabilities thatare proportional to the standard deviation of the model, thebest linear unbiased estimator and the Horvitz–Thompsonestimator are equal. Finally, it is possible to construct asingle estimator for both the design and model variance. Theinference can thus be valid under the sampling design and underthe model.  相似文献   

15.
Independent censoring is a crucial assumption in survival analysis. However, this is impractical in many medical studies, where the presence of dependent censoring leads to difficulty in analyzing covariate effects on disease outcomes. The semicompeting risks framework offers one approach to handling dependent censoring. There are two representative estimators based on an artificial censoring technique in this data structure. However, neither of these estimators is better than another with respect to efficiency (standard error). In this paper, we propose a new weighted estimator for the accelerated failure time (AFT) model under dependent censoring. One of the advantages in our approach is that these weights are optimal among all the linear combinations of the previously mentioned two estimators. To calculate these weights, a novel resampling-based scheme is employed. Attendant asymptotic statistical results for the estimator are established. In addition, simulation studies, as well as an application to real data, show the gains in efficiency for our estimator.  相似文献   

16.
When stratified random sampling is used for the estimation of population mean, use of ‘Combined ratio estimator’ is well known. Some improved estimators for population mean are proposed which are better than ‘Combined ratio estimator’ and some other well known existing ones, from the point of view of bias and mean square error. An empirical illustration is given.  相似文献   

17.
Gray RJ 《Biometrics》2000,56(2):571-576
An estimator of the regression parameters in a semiparametric transformed linear survival model is examined. This estimator consists of a single Newton-like update of the solution to a rank-based estimating equation from an initial consistent estimator. An automated penalized likelihood algorithm is proposed for estimating the optimal weight function for the estimating equations and the error hazard function that is needed in the variance estimator. In simulations, the estimated optimal weights are found to give reasonably efficient estimators of the regression parameters, and the variance estimators are found to perform well. The methodology is applied to an analysis of prognostic factors in non-Hodgkin's lymphoma.  相似文献   

18.
The relative risk (RR) is one of the most frequently used indices to measure the strength of association between a disease and a risk factor in etiological studies or the efficacy of an experimental treatment in clinical trials. In this paper, we concentrate attention on interval estimation of RR for sparse data, in which we have only a few patients per stratum, but a moderate or large number of strata. We consider five asymptotic interval estimators for RR, including a weighted least-squares (WLS) interval estimator with an ad hoc adjustment procedure for sparse data, an interval estimator proposed elsewhere for rare events, an interval estimator based on the Mantel-Haenszel (MH) estimator with a logarithmic transformation, an interval estimator calculated from a quadratic equation, and an interval estimator derived from the ratio estimator with a logarithmic transformation. On the basis of Monte Carlo simulations, we evaluate and compare the performance of these five interval estimators in a variety of situations. We note that, except for the cases in which the underlying common RR across strata is around 1, using the WLS interval estimator with the adjustment procedure for sparse data can be misleading. We note further that using the interval estimator suggested elsewhere for rare events tends to be conservative and hence leads to loss of efficiency. We find that the other three interval estimators can consistently perform well even when the mean number of patients for a given treatment is approximately 3 patients per stratum and the number of strata is as small as 20. Finally, we use a mortality data set comparing two chemotherapy treatments in patients with multiple myeloma to illustrate the use of the estimators discussed in this paper.  相似文献   

19.
Nielsen R  Tarpy DR  Reeve HK 《Molecular ecology》2003,12(11):3157-3164
Estimating paternity and genetic relatedness is central to many empirical and theoretical studies of social insects. The two important measures of a queen's mating number are her actual number of mates and her effective number of mates. Estimating the effective number of mates is mathematically identical to the problem of estimating the effective number of alleles in population genetics, a common measure of genetic variability introduced by Kimura & Crow (1964). We derive a new bias-corrected estimator of effective number of types (mates or alleles) and compare this new method to previous methods for estimating true and effective numbers of types using Monte Carlo simulations. Our simulation results suggest that the examined estimators of the true number of types have very similar statistical properties, whereas the estimators of effective number of types have quite different statistical properties. Moreover, our new proposed estimator of effective number of types is approximately unbiased, and has considerably lower variance than the original estimator. Our new method will help researchers more accurately estimate intracolony genetic relatedness of social insects, which is an important measure in understanding their ecology and social behaviour. It should also be of use in population genetic studies in which the effective number of alleles is of interest.  相似文献   

20.
Huihang Liu  Xinyu Zhang 《Biometrics》2023,79(3):2050-2062
Advances in information technologies have made network data increasingly frequent in a spectrum of big data applications, which is often explored by probabilistic graphical models. To precisely estimate the precision matrix, we propose an optimal model averaging estimator for Gaussian graphs. We prove that the proposed estimator is asymptotically optimal when candidate models are misspecified. The consistency and the asymptotic distribution of model averaging estimator, and the weight convergence are also studied when at least one correct model is included in the candidate set. Furthermore, numerical simulations and a real data analysis on yeast genetic data are conducted to illustrate that the proposed method is promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号