首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A H Lockwood 《Cell》1978,13(4):613-627
Cytoplasmic microtubule assembly from tubulin monomers requires an accessory protein or proteins present is isolated microtubules. These proteins have been designated "tau" factors. One such factor, tubulin assembly protein (TAP), has been purified to homogeneity from calf brain microtubules. A precipitating, monospecific antibody against the protein has been prepared. The antibody has been used to investigate the mechanism of TAP action in microtubule assembly and the distribution of TAP in cellular microtubules. Immunochemical, immunofluorescent and electron microscopic studies indicate that TAP functions stoichiometrically by binding physically to tubulin to form a complex active in microtubule assembly. TAP is an elongation protein which is required throughout the growth of a microtubule and which is actually present along the entire microtubule. Immunofluorescence microscopy has been used to demonstrate that TAP is distributed throughout the cytoplasmic microtubule network of cultured human, hamster and rat cells-both normal and virally transformed. Immunofluorescence of cells in mitosis shows that TAP is present in the mitotic spindle. These results demonstrate the biological importance of tubulin assembly protein and suggest that it or immunologically related "tau" proteins represent ubiquitous cofactors in cytoplasmic microtubule assembly.  相似文献   

2.
C6 cell tubulin is indistinguishable from hog brain tubulin with respect to its molecular weight, amino acid composition, and colchicine-binding activity. Moreover, microtubule assembly systems from both sources form the same structures: rings, ribbons, tubules, and drug-induced polymers. There is, nevertheless, a difference between the cultured cell and brain systems which lies in the nature of their microtubule-associated accessory proteins. C6 microtubule preparations exhibit few rings at 0 degrees C, have low polymerization yield, and have a low content of accessory proteins. The addition of brain accessory proteins enhances the numbers of rings, and the yield of microtubules, to levels comparable with those of brain preparations. The polymerizing ability of C6 microtubule protein decays much faster than that of brain, but it can be restored by the addition of brain accessory protein. The results suggest that C6 accessory proteins are more labile than their brain counterparts.  相似文献   

3.
Gamma-tubulin complexes and microtubule organization   总被引:6,自引:0,他引:6  
Microtubule nucleation requires gamma-tubulin, which exists in two main protein complexes: the gamma-tubulin small complex, and the gamma-tubulin ring complex. During mitosis, these complexes accumulate at the centrosome to support spindle formation. Gamma-tubulin complexes are also present at non-centrosomal microtubule nucleation sites, both in interphase and in mitosis. In interphase, non-centrosomal nucleation enables the formation of microtubule bundles or networks of branched microtubules. Gamma-tubulin complexes may be involved not only in microtubule nucleation, but also in regulating microtubule dynamics. Recent findings indicate that the dynamics of microtubule plus-ends are altered, depending on the expression of gamma-tubulin complex proteins.  相似文献   

4.
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.  相似文献   

5.
Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions in organizing the spindle midzone during mitosis. Using fluorescence live cell imaging, we show that ase1p localizes to sites of microtubule overlaps associated with microtubule organizing centers at both interphase and mitosis. ase1Delta mutants fail to form overlapping antiparallel microtubule bundles, leading to interphase nuclear positioning defects, and premature mitotic spindle collapse. FRAP analysis revealed that interphase ase1p at overlapping microtubule minus ends is highly dynamic. In contrast, mitotic ase1p at microtubule plus ends at the spindle midzone is more stable. We propose that ase1p functions to organize microtubules into overlapping antiparallel bundles both in interphase and mitosis and that ase1p may be differentially regulated through the cell cycle.  相似文献   

6.
A framework for understanding the complex movements of mitosis and meiosis has been provided by the recent discovery of microtubule motor proteins, required for the proper distribution of chromosomes or the structural integrity of the mitotic or meiotic spindle. Although overall features of mitosis and meiosis are often assumed to be similar in mechanism, it is now clear that they differ in several important aspects. These include spindle structure and assembly, and timing of chromosome segregation to opposite poles. Here we review progress in the functional characterization of several newly identified microtubule motor proteins, emphasizing their possible roles in spindle structure and function.  相似文献   

7.
All eukaryotes rely on multi-protein assemblies, called kinetochores, to direct the segregation of their chromosomes in mitosis. The list of known kinetochore components has been growing rapidly in the post-genomic era: in animal cells, there are presently more than 80 proteins that show either exclusive or partial localization at kinetochores during mitosis. The future challenge is to elucidate how these proteins contribute to kinetochore structure, spindle microtubule attachment, regulation of microtubule dynamics, and the detection, signaling, and correction of microtubule attachment errors. Cultured human tumor cells, especially HeLa cells, are widely used for the study of kinetochores. Recently, the experimental advantages offered by the nematode Caenorhabditis elegans have been exploited for functional analysis of kinetochore components in the first embryonic division. Here, we discuss basic methods, largely based on fluorescence imaging, to study kinetochore structure and function in these two metazoan model systems.  相似文献   

8.
Microtubule dynamics and tubulin interacting proteins   总被引:11,自引:0,他引:11  
Microtubule dynamics are crucial in generation of the mitotic spindle. During the transition from interphase to mitosis, there is an increase in the frequency of microtubule catastrophes. Recent work has identified two proteins, Op 18/stathmin and XKCM1, which can promote microtubule catastrophes in vitro and in cells or extracts. Although both of these proteins share the ability to bind tubulin dimers, their mechanisms of action in destabilizing microtubules are distinct.  相似文献   

9.
Dynamic microtubules are essential for the process of mitosis. Thus, elucidating when, where, and how microtubule dynamics are regulated is key to understanding this process. One important class of proteins that directly regulates microtubule dynamics is the Kinesin-13 family. Kinesin-13 proteins induce depolymerization uniquely from both ends of the microtubule. This activity coincides with their cellular localization and with their ability to regulate microtubule dynamics to control spindle assembly and kinetochore-microtubule attachments. In this review, we highlight recent findings that dissect the important actions of Kinesin-13 family members and summarize important studies on the regulation of their activity by phosphorylation and by protein–protein interactions.  相似文献   

10.
Microtubule inhibitors such as Vinblastine and Paclitaxel are chemotherapy agents that activate the mitotic spindle checkpoint, arresting cells in mitosis and leading to cell death. The pathways that connect mitotic arrest to cell death are not well characterized. We developed a mammalian cell-based cDNA cloning method to isolate proteins and protein fragments whose expression inhibits colony formation in the presence of microtubule inhibitors. Understanding how these proteins impact cellular responses to microtubule drugs will lead to better understanding of the biochemical pathways connecting mitotic arrest and cell death in mammalian cells and may provide novel targets that can enhance microtubule inhibitor-mediated chemotherapy.  相似文献   

11.
The complex cellular events that occur during development of the male gametophyte of higher plants suggest a role for the cytoskeleton. This investigation has revealed that unique microtubule arrays mediate events that occur during microspore development; both actin and microtubule arrays have important roles during the asymmetrical microspore mitosis and unique actin arrays mediate events that occur during early pollen development. Migration of the nucleus to the generative pole during cellular polarization of the microspore is mediated by a microtubule cage that encloses the nucleus. Nuclear position at the generative pole is maintained by an actin net that tethers it to the pole prior to the asymmetrical mitosis. During entry into mitosis, the microtubule cage becomes modified and transforms into the asymmetrical mitotic spindle. Actin is localized within the region of the mitotic spindle and in the phragmoplast. Following mitosis, actin networks enclose first the generative cell and then the vegetative nucleus. These actin networks function during migration of the generative cell and vegetative nucleus toward the centre of the pollen grain. Mature pollen contains a dense cortical actin meshwork and a disc-shaped microtubule array enclosing the generative cell. The functional importance of the unique actin and microtubule arrays is verified by their targeted disruption with specific cytoskeletal inhibitors, which disrupt normal development and cellular morphology. In summary, these data provide evidence that the co-ordinated reorganization of unique actin and microtubule arrays is an essential determinant of microspore and pollen development.  相似文献   

12.
The presence of phosphorylated proteins associated with microtubule organizing centers in tissue culture cells during mitosis has been demonstrated by the use of monoclonal antibodies raised against mitotic HeLa cells [Vandre et al., Proc. Natl. Acad. Sci. U.S.A. 81:4439-4443, 1984]. We report here that in Paramecium two of the mitosis specific antibodies, MPM-1 and MPM-2, decorate throughout the cell cycle all the microtubule organizing centers (MTOCs) located in the cortex and in the oral apparatus (gullet). Immuno-electron microscopy showed that these antibodies labeled the electron-dense material surrounding basal bodies from which several microtubule networks as well as kinetodesmal fibers originate. During mitosis, these antibodies also stained other cortical cytoskeletal structures, the kinetodesmal fibers (MPM-1 and MPM-2) and the epiplasm (MPM-1). Among the different polypeptides recognized by the antibodies on immunoblots, three major ones of 60, 63, and 116 kDa were found to be common to the cortex (where several thousand ciliary basal bodies are anchored) and the oral apparatus (which comprises several hundred basal bodies around which various arrays of cytoplasmic microtubules are organized). Alkaline phosphatase treatment abolished the immunoreactivity of the polypeptides and the labeling observed by immunofluorescence. These results demonstrate that phosphorylated proteins are associated with all the known active microtubule organizing centers present in the cortex throughout the cell cycle of Paramecium. Furthermore they indicate that in Paramecium phosphorylation of proteins could also be involved in the cell cycle dependent dynamics of cortical cytoskeletal structures other than microtubules.  相似文献   

13.
Mitotic centromere-associated kinesin (MCAK) is a microtubule-depolymerizing kinesin-13 member that can track with polymerizing microtubule tips (hereafter referred to as tip tracking) during both interphase and mitosis. MCAK tracks with microtubule tips by binding to end-binding proteins (EBs) through the microtubule tip localization signal SKIP, which lies N terminal to MCAK's neck and motor domain. The functional significance of MCAK's tip-tracking behavior during mitosis has never been explained. In this paper, we identify and define a mitotic function specific to the microtubule tip-associated population of MCAK: negative regulation of microtubule length within the assembling bipolar spindle. This function depends on MCAK's ability to bind EBs and track with polymerizing nonkinetochore microtubule tips. Although this activity antagonizes centrosome separation during bipolarization, it ultimately benefits the dividing cell by promoting robust kinetochore attachments to the spindle microtubules.  相似文献   

14.
The tinA gene of Aspergillus nidulans encodes a protein that interacts with the NIMA mitotic protein kinase in a cell cycle-specific manner. Highly similar proteins are encoded in Neurospora crassa and Aspergillus fumigatus. TINA and NIMA preferentially interact in interphase and larger forms of TINA are generated during mitosis. Localization studies indicate that TINA is specifically localized to the spindle pole bodies only during mitosis in a microtubule-dependent manner. Deletion of tinA alone is not lethal but displays synthetic lethality in combination with the anaphase-promoting complex/cyclosome mutation bimE7. At the bimE7 metaphase arrest point, lack of TINA enhanced the nucleation of bundles of cytoplasmic microtubules from the spindle pole bodies. These microtubules interacted to form spindles joined in series via astral microtubules as revealed by live cell imaging. Because TINA is modified and localizes to the spindle pole bodies at mitosis, and lack of TINA causes enhanced production of cytoplasmic microtubules at metaphase arrest, we suggest TINA is involved in negative regulation of the astral microtubule organizing capacity of the spindle pole bodies during metaphase.  相似文献   

15.
The cilia protein IFT88 is required for spindle orientation in mitosis   总被引:1,自引:0,他引:1  
Cilia dysfunction has long been associated with cyst formation and ciliopathies. More recently, misoriented cell division has been observed in cystic kidneys, but the molecular mechanism leading to this abnormality remains unclear. Proteins of the intraflagellar transport (IFT) machinery are linked to cystogenesis and are required for cilia formation in non-cycling cells. Several IFT proteins also localize to spindle poles in mitosis, indicating uncharacterized functions for these proteins in dividing cells. Here, we show that IFT88 depletion induces mitotic defects in human cultured cells, in kidney cells from the IFT88 mouse mutant Tg737(orpk) and in zebrafish embryos. In mitosis, IFT88 is part of a dynein1-driven complex that transports peripheral microtubule clusters containing microtubule-nucleating proteins to spindle poles to ensure proper formation of astral microtubule arrays and thus proper spindle orientation. This work identifies a mitotic mechanism for a cilia protein in the orientation of cell division and has important implications for the etiology of ciliopathies.  相似文献   

16.
Molecular analysis of kinetochore-microtubule attachment in budding yeast   总被引:27,自引:0,他引:27  
He X  Rines DR  Espelin CW  Sorger PK 《Cell》2001,106(2):195-206
The complex series of movements that mediates chromosome segregation during mitosis is dependent on the attachment of microtubules to kinetochores, DNA-protein complexes that assemble on centromeric DNA. We describe the use of live-cell imaging and chromatin immunoprecipitation in S. cerevisiae to identify ten kinetochore subunits, among which are yeast homologs of microtubule binding proteins in animal cells. By analyzing conditional mutations in several of these proteins, we show that they are required for the imposition of tension on paired sister kinetochores and for correct chromosome movement. The proteins include both molecular motors and microtubule associated proteins (MAPs), implying that motors and MAPs function together in binding chromosomes to spindle microtubules.  相似文献   

17.
A microtubule nucleates from a γ-tubuUn complex, which consists of γ-tubulin, proteins from the SPC971SPC98 family, and the WD40 motif protein GCP-WD. We analyzed the phylogenetic relationships of the genes encoding these proteins and found that the components of this complex are widely conserved among land plants and other eukaryotes. By contrast, the interphase and mitotic arrays of microtubules in land plants differ from those in other eukaryotes. In the interphase cortical array, the majority of microtubules nucleate on existing microtubules in the absence of conspicuous microtubule organizing centers (MTOCs), such as a centrosome. During mitosis, the spindle also forms in the absence of conspicuous MTOCs. Both poles of the spindle are broad, and branched structures of microtubules called microtubule converging centers form at the poles. In this review, we hypothesize that the microtubule converging centers form via microtubule-dependent microtubule nucleation, as in the case of the interphase arrays. The evolutionary insights arising from the molecular basis of the diversity in microtubule organization are discussed.  相似文献   

18.
19.
A group of antigens related by their reactivity with monoclonal antibodies MPM-1 and MPM-2 appear as cells enter mitosis. These antibodies bind to a phosphorylated epitope on certain proteins, and therefore the antigens are presumed to be a group of phosphoproteins. A subset of these proteins has been shown previously to be components of mitotic microtubule organizing centers in PtK1 cells. We present here evidence that the mitosis-specific appearance of these phosphoproteins is a phenomenon common to all eukaryotic cells. The MPM reactive phosphoproteins were localized to mitotic spindle poles regardless of whether the spindle formed in the cytoplasm after nuclear envelope breakdown (open mitosis) or within the nucleus (closed mitosis). This reactivity was not dependent upon the presence of centrioles at the spindle poles. Proteins that contained the phosphorylated epitope were not, however, restricted to mitotic cells. Cells of neuronal derivation and flagellated cells showed specific localization of MPM antibody to the microtubule network and basal bodies respectively. On immunoblots, the MPM antibody reacted with brain MAP-1 among a number of other phosphoproteins. The identification of microtubule-associated protein (MAP)-1 correlates with the localization of the antibody to microtubules of neuroblastoma cells. These results suggest, that different phosphoprotein molecules detected by the MPM antibody may be specific for different mitotic microtubule organizing centers, basal bodies, and other specialized cytoskeletal structures; and the presence of a related phosphorylated domain on these proteins may be important for their proper function and/or interaction with microtubules.  相似文献   

20.
Chromosome alignment and segregation during cell division rely on a highly ordered bipolar microtubule array called the mitotic spindle. The organization of microtubules into bipolar spindles with focused poles during mitosis requires numerous microtubule-associated proteins including both motor and nonmotor proteins. Nonmotor microtubule-associated proteins display extraordinary diversity in how they contribute to mitotic spindle organization. These mechanisms include regulation of microtubule nucleation and organization, direct and indirect influences on motor function, and control of cell cycle progression. Furthermore, many nonmotor spindle proteins display altered expression in cancer cells emphasizing their important roles in cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号