首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The IsK protein associates with KvLQT1 potassium channels to generate the slow component of the outward rectifying K(+) current involved in human cardiac repolarization. Mutations in either KCNE1 (encoding IsK) or KCNQ1 (encoding KvLQT1) genes have been associated with the long QT syndrome, a genetic disorder leading to prolonged cardiac repolarization and sudden death. We now report that the IsK protein is also involved in mature T cell homeostasis. In KCNE1 gene knockout mice, we observed a significant increase in the T cell compartment. Thymus and peripheral lymphoid organs of KCNE1-/- mice displayed a significant increase in mature T cells. The immunological phenotype of KCNE1-/- is age-dependent and only expressed in adult mice. Both IsK and KvLQT1 mRNA are expressed in murine thymus. Our data suggest that, in addition to its role in myocardial repolarization, the IsK-KvLQT1 tandem also plays a crucial role in T cell homeostasis.  相似文献   

2.
The LQT1 locus (KCNQ1) has been correlated with the most common form of inherited long QT (LQT) syndrome. LQT patients suffer from syncopal episodes and high risk of sudden death. The KCNQ1 gene encodes KvLQT1 alpha-subunits, which together with auxiliary IsK (KCNE1, minK) subunits form IK(s) K(+) channels. Mutant KvLQT1 subunits may be associated either with an autosomal dominant form of inherited LQT, Romano-Ward syndrome, or an autosomal recessive form, Jervell and Lange-Nielsen syndrome (JLNS). We have identified a small domain between residues 589 and 620 in the KvLQT1 C-terminus, which may function as an assembly domain for KvLQT1 subunits. KvLQT1 C-termini do not assemble and KvLQT1 subunits do not express functional K(+) channels without this domain. We showed that a JLN deletion-insertion mutation at KvLQT1 residue 544 eliminates important parts of the C-terminal assembly domain. Therefore, JLN mutants may be defective in KvLQT1 subunit assembly. The results provide a molecular basis for the clinical observation that heterozygous JLN carriers show slight cardiac dysfunctions and that the severe JLNS phenotype is characterized by the absence of KvLQT1 channel.  相似文献   

3.
Long Q-T mutant (KvLQT1) K(+) channels associate with their regulatory subunit IsK to produce the slow component of the delayed rectifier potassium (I(Ks)) cardiac current. The amplitude of KvLQT1 current depends on the expression of a KvLQT1 splice variant (isoform 2) that exerts strong dominant negative effects on the full-length KvLQT1 protein (isoform 1). We used RNase protection assays to determine the relative expression of KvLQT1 isoforms 1 and 2 and IsK mRNAs in human ventricular layers. Overall expression of KvLQT1 and IsK genes was similar in the three layers. However, there was a significant difference in the ratio between KvLQT1 isoforms 1 and 2. Isoform 2 represented 25.2 +/- 2.3%, 31.7 +/- 1.2%, and 24.9 +/- 1.7% of total KvLQT1 expression in left ventricular endocardial, midmyocardial, and epicardial tissues, respectively. Similar data were obtained from right ventricular samples. COS-7 cells were intranuclearly injected with KvLQT1 isoforms 1 or 2 plus IsK cDNAs, using two different isoform 2-to-isoform 1 ratios. Cells injected with an isoform 2-to-isoform 1 ratio mimicking that in the midmyocardium showed a K(+) current with approximately 75% reduced amplitude compared with those injected with a ratio mimicking that in the epicardium. Our results suggest that differential expression of KvLQT1 isoform 2 in endocardial, midmyocardial, and epicardial tissues is responsible for differential I(Ks) amplitude and contributes to the regional action potential heterogeneity observed across the ventricular wall.  相似文献   

4.
In cardiac myocytes, the slow component of the delayed rectifier K(+) current (I(Ks)) is regulated by cAMP. Elevated cAMP increases I(Ks) amplitude, slows its deactivation kinetics, and shifts its activation curve. At the molecular level, I(Ks) channels are composed of KvLQT1/IsK complexes. In a variety of mammalian heterologous expression systems maintained at physiological temperature, we explored cAMP regulation of recombinant KvLQT1/IsK complexes. In these systems, KvLQT1/IsK complexes were totally insensitive to cAMP regulation. cAMP regulation was not restored by coexpression with the dominant negative isoform of KvLQT1 or with the cystic fibrosis transmembrane regulator. In contrast, coexpression of the neuronal A kinase anchoring protein (AKAP)79, a fragment of a cardiac AKAP (mAKAP), or cardiac AKAP15/18 restored cAMP regulation of KvLQT1/IsK complexes inasmuch as cAMP stimulation increased the I(Ks) amplitude, increased its deactivation time constant, and negatively shifted its activation curve. However, in cells expressing an AKAP, the effects of cAMP stimulation on the I(Ks) amplitude remained modest compared with those previously reported in cardiac myocytes. The effects of cAMP stimulation were fully prevented by including the Ht31 peptide (a global disruptor of protein kinase A anchoring) in the intracellular medium. We concluded that cAMP regulation of I(Ks) requires protein kinase A anchoring by AKAPs, which therefore participate with the channel protein complex underlying I(Ks).  相似文献   

5.
Mutations in the delayed rectifier K+ channel subunit KvLQT1 have been identified as responsible for both Romano-Ward (RW) and Jervell and Lange-Nielsen (JLN) inherited long QT syndromes. We report the molecular cloning of a human KvLQT1 isoform that is expressed in several human tissues including heart. Expression studies revealed that the association of KvLQT1 with another subunit, IsK, reconstitutes a channel responsible for the IKs current involved in ventricular myocyte repolarization. Six RW and two JLN mutated KvLQT1 subunits were produced and co-expressed with IsK in COS cells. All the mutants, except R555C, fail to produce functional homomeric channels and reduce the K+ current when co-expressed with the wild-type subunit. Thus, in both syndromes, the main effect of the mutations is a dominant-negative suppression of KvLQT1 function. The JLN mutations have a smaller dominant-negative effect, in agreement with the fact that the disease is recessive. The R555C subunit forms a functional channel when expressed with IsK, but with altered gating properties. The voltage dependence of the activation is strongly shifted to more positive values, and deactivation kinetics are accelerated. This finding indicates the functional importance of a small positively charged cytoplasmic region of the KvLQT structure where two RW and one JLN mutations have been found to take place.  相似文献   

6.
The cell volume regulatory response following hypotonic shocks is often achieved by the coordinated activation of K(+) and Cl(-) channels. In this study, we investigate the identity of the K(+) and Cl(-) channels that mediate the regulatory volume decrease (RVD) in ciliated epithelial cells from murine trachea. RVD was inhibited by tamoxifen and 1,9-dideoxyforskolin, two agents that block swelling-activated Cl(-) channels. These data suggest that swelling-activated Cl(-) channels play an important role in cell volume regulation in murine tracheal epithelial cells. Ba(2+) and apamin, inhibitors of K(+) channels, were without effect on RVD, while tetraethylammoniun had little effect on RVD. In contrast, clofilium, an inhibitor of the KvLQT/IsK potassium channel complex potently inhibited RVD, suggesting a role for the KvLQT/IsK channel complex in cell volume regulation by tracheal epithelial cells. To investigate further the role of KvLQT/IsK channels in RVD, we used IsK knock-out mice. When exposed to hypotonic solutions, tracheal cells from IsK(+/+) mice underwent RVD, whereas cells from IsK(-/-) failed to recover their normal size. These data suggest that the IsK potassium subunit plays an important role in RVD in murine tracheal epithelial cells.  相似文献   

7.
The long QT syndrome is characterized by prolonged cardiac repolarization and a high risk of sudden death. Mutations in the KCNQ1 gene, which encodes the cardiac KvLQT1 potassium ion (K+) channel, cause both the autosomal dominant Romano-Ward (RW) syndrome and the recessive Jervell and Lange-Nielsen (JLN) syndrome. JLN presents with cardiac arrhythmias and congenital deafness, and heterozygous carriers of JLN mutations exhibit a very mild cardiac phenotype. Despite the phenotypic differences between heterozygotes with RW and those with JLN mutations, both classes of variant protein fail to produce K+ currents in cultured cells. We have shown that an N-terminus-truncated KvLQT1 isoform endogenously expressed in the human heart exerts strong dominant-negative effects on the full-length KvLQT1 protein. Because RW and JLN mutations concern both truncated and full-length KvLQT1 isoforms, we investigated whether RW or JLN mutations would have different impacts on the dominant-negative properties of the truncated KvLQT1 splice variant. In a mammalian expression system, we found that JLN, but not RW, mutations suppress the dominant-negative effects of the truncated KvLQT1. Thus, in JLN heterozygous carriers, the full-length KvLQT1 protein encoded by the unaffected allele should not be subject to the negative influence of the mutated truncated isoform, leaving some cardiac K+ current available for repolarization. This is the first report of a genetic disease in which the impact of a mutation on a dominant-negative isoform correlates with the phenotype.  相似文献   

8.
BACKGROUND/AIMS: Heteromeric KCNEx/KCNQ1 (=KvLQT1, Kv7.1) K(+) channels are important for repolarization of cardiac myocytes, endolymph secretion in the inner ear, gastric acid secretion, and transport across epithelia. They are modulated by pH in a complex way: homomeric KCNQ1 is inhibited by external acidification (low pH(e)); KCNE2/KCNQ1 is activated; and for KCNE1/KCNQ1, variable effects have been reported. Methods: The role of KCNE subunits for the effect of pH(e) on KCNQ1 was analyzed in transfected COS cells and cardiac myocytes by the patch-clamp technique. RESULTS: In outside-out patches of transfected cells, hKCNE2/hKCNQ1 current was increased by acidification down to pH 4.5. Chimeras with the acid-insensitive hKCNE3 revealed that the extracellular N-terminus and at least part of the transmembrane domain of hKCNE2 are needed for activation by low pH(e). hKCNE1/hKCNQ1 heteromeric channels exhibited marked changes of biophysical properties at low pH(e): The slowly activating hKCNE1/hKCNQ1 channels were converted into constitutively open, non-deactivating channels. Experiments on guinea pig and mouse cardiac myocytes pointed to an important role of KCNQ1 during acidosis implicating a significant contribution to cardiac repolarization under acidic conditions. CONCLUSION: External pH can modify current amplitude and biophysical properties of KCNQ1. KCNE subunits work as molecular switches by modulating the pH sensitivity of human KCNQ1.  相似文献   

9.
The aim of this study was to evaluate KCNQ1 K+ channel expression in the frog kidney of Rana esculenta. KCNQ1 K+ channel, also known as KvLQT1, is the pore forming α-subunit of the IKs K+ channel, a delayed rectifier voltage-gated K+ channel, which has an important role in water and salt transport in the kidney and gastrointestinal tract. The expression of KCNQ1 K+ channel along tubular epithelium differs from species to species. In the present study the expression of KCNQ1 K+ channel in the frog kidney has been demonstrated by immunohistochemistry. The presence of KCNQ1 K+ channel was demonstrated in the epithelial cells of distal convoluted tubule and collecting duct. However, the pattern of expression of KCNQ1 K+ channel differs between distal convoluted tubules and collecting duct. All epithelial cells of distal convoluted tubules revealed basolateral expression of KCNQ1 K+ channel. On the contrary, only the single cells of collecting duct, probably intercalated cells, showed diffuse cell surface staining with antibodies against KCNQ1 K+ channel. These findings suggest that KCNQ1 K+ channel has cell-specific roles in renal potassium ion transport.Key words: KCNQ1 K+ channel, rana esculenta, frog kidney, immunohistochemistry.  相似文献   

10.
The gene KCNQ1 encodes a K(+) channel alpha-subunit important for cardiac repolarization, formerly known as K(v)LQT1. In large and small intestine a channel complex consisting of KCNQ1 and the beta-subunit KCNE3 (MiRP2) is known to mediate the cAMP-activated basolateral K(+) current, which is essential for luminal Cl(-) secretion. Northern blot experiments revealed an expression of both subunits in lung tissue. However, previous reports suggested a role of KCNE1 (minK, Isk) but not KCNE3 in airway epithelial cells. Here we give evidence that KCNE1 is not detected in murine tracheal epithelial cells and that Cl(-) secretion by these cells is not reduced by the knock-out of the KCNE1 gene. In contrast we show that a complex consisting of KCNQ1 and KCNE3 probably forms a basolateral K(+) channel in murine tracheal epithelial cells. As described for colonic epithelium, the current through KCNQ1 complexes in murine trachea is specifically inhibited by the chromanol 293B. A 293B-sensitive current was present after stimulation with forskolin and agonists that increase Ca(2+) as well as after administration of the pharmacological K(+) channel activator, 1-EBIO. A 293B-inhibitable current was already present under control conditions and reduced after administration of amiloride indicating a role of this K(+) channel not only for Cl(-) secretion but also for Na(+) reabsorption. We conclude that at least in mice a KCNQ1 channel complex seems to be the dominant basolateral K(+) conductance in tracheal epithelial cells.  相似文献   

11.
Through subtractive hybridization, H+/K+-ATPase beta subunit mRNA, highly expressed in the larval stomach of Xenopus laevis, was isolated. In situ hybridization demonstrated that the H+/K+-ATPase beta subunit mRNA was exclusively expressed in manicotto gland cells of the larval stomach, not in any other cell. Northern blot analysis showed that metamorphosis-associated changes of the H+/K+-ATPase beta subunit mRNA expression in the stomach were characterized by high expression in tadpoles, a considerably lower expression in metamorphosing tadpoles, and a re-increase of expression in froglets. Further in situ hybridization showed that the decrease of expression correlated with the degeneration of larval type epithelium in the manicotto gland, while the re-increase correlated with the differentiation of oxynticopeptic cells of the adult type stomach. Moreover, the H+/K+-ATPase beta subunit mRNA was expressed in adult epithelial primordia. Such changes were found in thyroid hormone-induced precocious metamorphosis. Based on studies using this ATPase as well as xP1 and PgC (pepsinogen C) as molecular markers, this study discusses a probable cell lineage involved in metamorphosis-associated stomach remodeling. The pH of luminal contents of the larval stomach was found to be lower than 2. In addition, the pH of an isolated stomach changed from 7.2 to lower than 4 after incubation in Ringer's solution, suggesting acid production from the larval stomach. This is the first demonstration of the H+/K+-ATPase-mediated acid production and secretion in the larval stomach of Xenopus laevis.  相似文献   

12.
HCO3- secretion by gastric mucous cells is essential for protection against acidic injury and peptic ulcer. Herein we report the identification of an apical HCO3- transporter in gastric surface epithelial cells. Northern hybridization and RT-PCR demonstrate the expression of this transporter, also known as SLC26A9, in mouse and rat stomach and trachea (but not kidney). In situ hybridization in mouse stomach showed abundant expression of SLC26A9 in surface epithelial cells with apical localization on immunofluorescence labeling. Functional studies in HEK-293 cells demonstrated that SLC26A9 mediates Cl-/HCO3- exchange and is also capable of Cl--independent HCO3- extrusion. Unlike other anion exchangers or transport proteins reported to date, SLC26A9 activity is inhibited by ammonium (NH4+). The inhibitory effect of NH4+ on gastric HCO3- secretion was also indicated by reduced gastric juxtamucosal pH (pHjm) in rat stomach in vivo. This report is the first to describe the inhibition of HCO3- transport in vitro and the reduction of pHjm in stomach in vivo by NH4+. Given its critical localization on the apical membrane of surface epithelial cells, its ability to transport HCO3-, and its inhibition by NH4+, we propose that SLC26A9 mediates HCO3- secretion in surface epithelial cells and is essential for protection against acidic injury in the stomach. Disease states that are associated with increased ammonia (NH3)/NH4+ generation (e.g., Helicobacter pylori) may impair gastric HCO3- secretion and therefore predispose patients to peptic ulcer by inhibiting SLC26A9.  相似文献   

13.
Mutations in HERG and KCNQ1 (or KVLQT1) genes cause the life-threatening Long QT syndrome. These genes encode K(+) channel pore-forming subunits that associate with ancillary subunits from the KCNE family to underlie the two components, I(Kr) and I(Ks), of the human cardiac delayed rectifier current I(K). The KCNE family comprises at least three members. KCNE1 (IsK or MinK) recapitulates I(Ks) when associated with KCNQ1, whereas it augments the amplitude of an I(Kr)-like current when co-expressed with HERG. KCNE3 markedly changes KCNQ1 as well as HERG current properties. So far, KCNE2 (MirP1) has only been shown to modulate HERG current. Here we demonstrate the interaction of KCNE2 with the KCNQ1 subunit, which results in a drastic change of KCNQ1 current amplitude and gating properties. Furthermore, KCNE2 mutations also reveal their specific functional consequences on KCNQ1 currents. KCNQ1 and HERG appear to share unique interactions with KCNE1, 2 and 3 subunits. With the exception of KCNE3, mutations in all these partner subunits have been found to lead to an increased propensity for cardiac arrhythmias.  相似文献   

14.
15.
The K+ channel KCNQ1 (KVLQT1) is a voltage-gated K+ channel, coexpressed with regulatory subunits such as KCNE1 (IsK, mink) or KCNE3, depending on the tissue examined. Here, we investigate regulation and properties of human and rat KCNQ1 and the impact of regulators such as KCNE1 and KCNE3. Because the cystic fibrosis transmembrane conductance regulator (CFTR) has also been suggested to regulate KCNQ1 channels we studied the effects of CFTR on KCNQ1 in Xenopus oocytes. Expression of both human and rat KCNQ1 induced time dependent K+ currents that were sensitive to Ba2+ and 293B. Coexpression with KCNE1 delayed voltage activation, while coexpression with KCNE3 accelerated current activation. KCNQ1 currents were activated by an increase in intracellular cAMP, independent of coexpression with KCNE1 or KCNE3. cAMP dependent activation was abolished in N-terminal truncated hKCNQ1 but was still detectable after deletion of a single PKA phosphorylation motif. In the presence but not in the absence of KCNE1 or KCNE3, K+ currents were activated by the Ca2+ ionophore ionomycin. Coexpression of CFTR with either human or rat KCNQ1 had no impact on regulation of KCNQ1 K+ currents by cAMP but slightly shifted the concentration response curve for 293B. Thus, KCNQ1 expressed in Xenopus oocytes is regulated by cAMP and Ca2+ but is not affected by CFTR. Received: 13 December 2000/Revised: 30 March 2001  相似文献   

16.
17.
Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K(+)](o)) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether I(Ks) compensates for the reduced I(Kr) under low K(+) conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mM K(+) for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mM K(+)-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mM K(+) conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS.  相似文献   

18.
Although K+ channels are essential for hepatocellular function, it is not known which channels are involved in the regulatory volume decrease (RVD) in these cells. We have used a combination of electrophysiological and molecular approaches to describe the potential candidates for these channels. The dialysis of short-term cultured rat hepatocytes with a hypotonic solution containing high K+ and low Cl- concentration caused the slow activation of an outward, time-independent current under whole-cell configuration of the patch electrode voltage clamp. The reversal potential of this current suggested that K+ was the primary charge carrier. The swelling-induced K+ current (IKvol) occurred in the absence of Ca2+ and was inhibited with 1 microM Ca2+ in the pipette solution. The activation of IKvol required both Mg2+ and ATP and an increasing concentration of Mg-ATP from 0.25 through 0.5 to 0.9 mM activated IKvol increasingly faster and to a larger extent. The KCNQ1 inhibitor chromanol 293B reversibly depressed IKvol with an IC50 of 26 microM. RT-PCR detected the expression of members of the KCNQ family from KCNQ1 to KCNQ5 and of the accessory proteins KCNE1 to KCNE3 in the rat hepatocytes, but not KCNQ2 and KCNE2 in human liver. Western blotting showed KCNE3 expression in a plasma membrane-enriched fraction from rat hepatocytes. The results suggest that KCNQ1, probably with KCNE2 or KCNE3 as its accessory unit, provides a significant fraction of IKvol in rat hepatocytes.  相似文献   

19.
KCNQ2 and KCNQ3 K+ channel subunits underlie the muscarinic-regulated K+ current (I(KM)), a widespread regulator of neuronal excitability. Mutations in KCNQ2- or KCNQ3-encoding genes cause benign familiar neonatal convulsions (BFNCs), a rare autosomal-dominant idiopathic epilepsy of the newborn. In the present study, we have investigated, by means of electrophysiological, biochemical, and immunocytochemical techniques in transiently transfected cells, the consequences prompted by a BFNC-causing 1-bp deletion (2043deltaT) in the KCNQ2 gene; this frameshift mutation caused the substitution of the last 163 amino acids of the KCNQ2 C terminus and the extension of the subunit by additional 56 residues. The 2043deltaT mutation abolished voltage-gated K+ currents produced upon homomeric expression of KCNQ2 subunits, dramatically reduced the steady-state cellular levels of KCNQ2 subunits, and prevented their delivery to the plasma membrane. Metabolic labeling experiments revealed that mutant KCNQ2 subunits underwent faster degradation; 10-h treatment with the proteasomal inhibitor MG132 (20 microm) at least partially reversed such enhanced degradation. Co-expression with KCNQ3 subunits reduced the degradation rate of mutant KCNQ2 subunits and led to their expression on the plasma membrane. Finally, co-expression of KCNQ2 2043deltaT together with KCNQ3 subunits generated functional voltage-gated K+ currents having pharmacological and biophysical properties of heteromeric channels. Collectively, the present results suggest that mutation-induced reduced stability of KCNQ2 subunits may cause epilepsy in neonates.  相似文献   

20.
Mutations in the cardiac potassium ion channel gene KCNQ1 (voltage-gated K(+) channel subtype KvLQT1) cause LQT1, the most common type of hereditary long Q-T syndrome. KvLQT1 mutations prolong Q-T by reducing the repolarizing cardiac current [slow delayed rectifier K(+) current (I(Ks) )], but, for reasons that are not well understood, the clinical phenotypes may vary considerably even for carriers of the same mutation, perhaps explaining the mode of inheritance. At present, only currents expressed by LQT1 mutants have been studied, and it is unknown whether abnormal subunits are transported to the cell surface. Here, we have examined for the first time trafficking of KvLQT1 mutations and correlated the results with the I(Ks) currents that were expressed. Two missense mutations, S225L and A300T, produced abnormal currents, and two others, Y281C and Y315C, produced no currents. However, all four KvLQT1 mutations were detected at the cell surface. S225L, Y281C, and Y315C produced dominant negative effects on wild-type I(Ks) current, whereas the mutant with the mildest dysfunction, A300T, did not. We examined trafficking of a severe insertion deletion mutant Delta544 and detected this protein at the cell surface as well. We compared the cellular and clinical phenotypes and found a poor correlation for the severely dysfunctional mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号