首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The type 2 diabetes is increasing rapidly around the globe. The primary cause for this is insulin resistance due to the disruption of the insulin signal transduction mechanism. Insulin signal transduction stimulates glucose transport through the glucose transporter GLUT4, by promoting the exocytosis process. Understanding the structural topology of GLUT4 mechanism will increase our understanding of the dynamic activities about glucose transport and its regulation in the membrane environment. However, little is known about the topology of GLUT4. In this article, we have determined the amino acid composition, disulfide topology, structure conformation pattern of GLUT4. The amino acid composition portrays that leucine composition is the highest contributing to 15.5 % among all other amino acids. Three cysteine residues such as Cys223, Cys361, and Cys363 were observed and the last two were associated with one disulfide bond formation. We have generated surface cavities to know the clefts/pockets on the surface of this protein that showed few irregular cavities placed mostly in the transmembrane-helical part. Besides, topology mapping of 12 transmembrane-helixes was done to predict N- and O-glycosylation sites and to show the highly glycosylated GLUT4 that includes both N- and O-glycosylation sites. Furthermore, hydrophobic segment and molecular charge distribution were analyzed. This article shows that bioinformatics tools can provide a rapid methodology to predict the topology of GLUT4. It also provides insights into the structural details and structural functioning relationships in the human GLUT4. The results can be of great help to advance future drug development research using GLUT4 as a target protein.  相似文献   

2.
Insulin-stimulated GLUT4 recruitment to the plasma membrane is impaired in insulin resistance. We recently reported that a cell permeable phosphoinositide-binding peptide induces GLUT4 recruitment as potently as insulin, but does not activate GLUT4 to initiate glucose uptake. Here we investigated whether the peptide-induced GLUT4 recruitment is intact in insulin resistance. The expression levels of GLUT1 and GLUT4 were unaffected by chronically treating 3T3-L1 adipocytes with insulin. GLUT4 recruitment by acute insulin stimulation after chronic insulin treatment was significantly reduced, but was fully restored by the peptide treatment. However, subsequent acute insulin stimulation to activate GLUT4 failed to increase glucose uptake in peptide-pretreated cells. Insulin-stimulated GLUT1 recruitment was unaffected by the peptide pretreatment. These results suggest that the GLUT4 recruitment signal caused by the peptide is intact in insulin resistance, but GLUT4 activation that occurs subsequent to recruitment is not rescued by the peptide treatment.  相似文献   

3.
The GLUT4 code   总被引:1,自引:0,他引:1  
Despite being one of the first recognized targets of insulin action, the acceleration of glucose transport into muscle and fat tissue remains one of the most enigmatic processes in the insulin action cascade. Glucose transport is accomplished by a shift in the distribution of the insulin-responsive glucose transporter GLUT4 from intracellular compartments to the plasma membrane in the presence of insulin. The complexity in deciphering the molecular blueprint of insulin regulation of glucose transport arises because it represents a convergence of two convoluted biological systems-vesicular transport and signal transduction. Whereas more than 60 molecular players have been implicated in this orchestral performance, it has been difficult to distinguish between mainly passive participants vs. those that are clearly driving the process. The maze-like nature of the endosomal system makes it almost impossible to dissect the anatomical nature of what appears to be a medley of many overlapping and rapidly changing transitions. A major limitation is technology. It is clear that further progress in teasing apart the GLUT4 code will require the development and application of novel and advanced technologies that can discriminate one molecule from another in the living cell and to superimpose this upon a system in which the molecular environment can be carefully manipulated. Many are now taking on this challenge.  相似文献   

4.
A major consequence of insulin binding its receptor on fat and muscle cells is translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the cell surface where it serves to clear glucose from the bloodstream. Sorting of GLUT4 into its insulin‐sensitive store requires the GGA [Golgi‐localized, γ‐ear‐containing, ADP ribosylation factor (ARF)‐binding] adaptor proteins, but the signal on GLUT4 to direct this sorting step is unknown. Here, we have identified a role for ubiquitination of GLUT4 in this process. We demonstrate that GLUT4 is ubiquitinated in 3T3‐L1 adipocytes, and that a ubiquitin‐resistant version fails to translocate to the cell surface of these cells in response to insulin. Our data support a model in which ubiquitination acts as a signal for the trafficking of GLUT4 from the endosomal/trans‐Golgi network (TGN) system into its intracellular storage compartment, from where it is mobilized to the cell surface in response to insulin.  相似文献   

5.
To promote glucose uptake into fat and muscle cells, insulin causes the translocation of GLUT4 glucose transporters from intracellular vesicles to the cell surface. Previous data support a model in which TUG traps GLUT4-containing vesicles and tethers them intracellularly in unstimulated cells and in which insulin mobilizes this pool of vesicles by releasing this tether. Here we show that TUG undergoes site-specific endoproteolytic cleavage, which separates a GLUT4-binding, N-terminal region of TUG from a C-terminal region previously suggested to bind an intracellular anchor. Cleavage is accelerated by insulin stimulation in 3T3-L1 adipocytes and is highly dependent upon adipocyte differentiation. The N-terminal TUG cleavage product has properties of a novel 18-kDa ubiquitin-like modifier, which we call TUGUL. The C-terminal product is observed at the expected size of 42 kDa and also as a 54-kDa form that is released from membranes into the cytosol. In transfected cells, intact TUG links GLUT4 to PIST and also binds Golgin-160 through its C-terminal region. PIST is an effector of TC10α, a GTPase previously shown to transmit an insulin signal required for GLUT4 translocation, and we show using RNAi that TC10α is required for TUG proteolytic processing. Finally, we demonstrate that a cleavage-resistant form of TUG does not support highly insulin-responsive GLUT4 translocation or glucose uptake in 3T3-L1 adipocytes. Together with previous results, these data support a model whereby insulin stimulates TUG cleavage to liberate GLUT4 storage vesicles from the Golgi matrix, which promotes GLUT4 translocation to the cell surface and enhances glucose uptake.  相似文献   

6.
Regulated transport of the glucose transporter GLUT4   总被引:1,自引:0,他引:1  
In muscle and fat cells, insulin stimulates the delivery of the glucose transporter GLUT4 from an intracellular location to the cell surface, where it facilitates the reduction of plasma glucose levels. Understanding the molecular mechanisms that mediate this translocation event involves integrating our knowledge of two fundamental processes--the signal transduction pathways that are triggered when insulin binds to its receptor and the membrane transport events that need to be modified to divert GLUT4 from intracellular storage to an active plasma membrane shuttle service.  相似文献   

7.
Exploring the whereabouts of GLUT4 in skeletal muscle (review)   总被引:4,自引:0,他引:4  
The glucose transporter GLUT4 is expressed in muscle, fat cells, brain and kidney. In contrast to other glucose transporters, GLUT4 in unstimulated cells is mostly intracellular. Stimuli such as insulin and muscle contractions then cause the translocation of GLUT4 to the cell surface. Questions related to GLUT4 storage compartments, trafficking to the surface membrane, and nature of the intracellular pools, have kept many groups busy for the past 20 years. Yet, one of the main questions in the field remains the universality of GLUT4 features. Can one extrapolate work done on fat cells to muscle or brain? Or vice-versa? Can one use cultures to predict GLUT4 behaviour in fully differentiated tissues? This review summarizes the authors' knowledge of GLUT4 biology in skeletal muscle, which is the predominant tissue for glucose homeostasis. The results are compared to those obtained with the fat cell system, and an attempt is made to assess the universality principle.  相似文献   

8.
In response to insulin, glucose transporter GLUT4 translocates from intracellular compartments towards the plasma membrane where it enhances cellular glucose uptake. Here, we show that sera from various species contain a factor that dose-dependently induces GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes, human adipocytes, myoblasts and myotubes. Notably, the effect of this factor on GLUT4 is fully maintained in insulin-resistant cells. Our studies demonstrate that the serum-induced increase in cell surface GLUT4 levels is not due to inhibition of its internalization and is not mediated by insulin, PDGF, IGF-1, or HGF. Similarly to insulin, serum also augments cell surface levels of GLUT1 and TfR. Remarkably, the acute effect of serum on GLUT4 is largely additive to that of insulin, while it also sensitizes the cells to insulin. In accordance with these findings, serum does not appear to activate the same repertoire of downstream signaling molecules that are implicated in insulin-induced GLUT4 translocation. We conclude that in addition to insulin, at least one other biological proteinaceous factor exists that contributes to GLUT4 regulation and still functions in insulin resistance. The challenge now is to identify this factor.  相似文献   

9.
Insulin stimulation of GLUT-4 translocation: a model for regulated recycling   总被引:12,自引:0,他引:12  
Insulin stimulates glucose transport in muscle and fat cells by causing the redistribution of a facilitative glucose transporter, GLUT-4, from an intracellular compartment to the cell surface. But what is this intracellular GLUT-4 compartment? It may be a specialized compartment, perhaps analogous to synaptic vesicles, or may simply be part of the endosomal system. Other constituents of this compartment might be regulators of GLUT-4 movement to the cell surface, and their identification should make it possible to find the link between the insulin signal transduction pathway and GLUT-4 translocation.  相似文献   

10.
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose transporters (GLUTs) are transmembrane proteins that transport glucose across the cell membrane. Insulin promotes glucose utilization in part through promoting glucose entry into the skeletal and adipose tissues. This has been thought to be achieved through insulin-induced GLUT4 translocation from intracellular compartments to the cell membrane, which increases the overall rate of glucose flux into a cell. The insulin-induced GLUT4 translocation has been investigated extensively. Recently, significant progress has been made in our understanding of GLUT4 expression and translocation. Here, we summarized the methods and reagents used to determine the expression levels of Slc2a4 mRNA and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose tissues, heart and brain. Overall, a variety of methods such real-time polymerase chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, stable cell line and transgenic animals have been used to answer particular questions related to GLUT4 system and insulin action. It seems that insulin-induced GLUT4 translocation can be observed in the heart and brain in addition to the skeletal muscle and adipocytes. Hormones other than insulin can induce GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future to advance of our understanding of glucose homeostasis.  相似文献   

11.
Insulin treatment of rat adipocytes increases both cytoplasmic alkalinity and glucose transport activity. Both processes are blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. Isoproterenol pre-treatment reverses the alkalinizing effects of insulin and leads to attenuation of insulin-stimulated glucose transport activity and exposure of GLUT4 to photolabeling reagents at the cell surface. These effects of isoproterenol are mimicked by acid loading and are reversed by cell-alkalinizing conditions. However, neither isoproterenol nor acid loading alters the total level of GLUT4 at the plasma membrane as revealed by Western blotting of plasma membrane fractions or immunodetection of GLUT4 in plasma membrane lawns. GLUT4 is therefore occluded from participation in glucose transport catalysis by a pH-sensitive process. To examine the kinetics of trafficking that lead to these changes in cell surface GLUT4 occlusion, we have utilized a new biotinylated photolabel, GP15. This reagent has a 70-atom spacer between the biotin and the photolabeling diazirine group, and this allows quenching of the surface signal of biotinylated GLUT4 by extracellular avidin. The rates of GLUT4 internalization are only slightly altered by isoproterenol or acidification, mainly due to reduced recycling over long internalization times. By contrast, insulin stimulation of GLUT4 exocytosis is slowed by isoproterenol or acidification pre-treatments. Biphasic time courses are evident, with an initial burst of exposure at the cell surface followed by a slow phase. It is hypothesized that the burst kinetics are a consequence of a two-phase fusion reaction that is rapid in the presence of insulin but slowed by cytosol acidification.  相似文献   

12.
Unlike the intensive research in pursuit of understanding the molecular mechanisms of insulin signaling and resistance to its biological action associated most significantly with obesity and type 2 diabetes, the influence of the plasma membrane on insulin sensitivity has been intermittently studied over the years—mainly because it was thought that mediators of insulin action, such as the insulin receptor and the insulin-responsive glucose transporter GLUT4, localize more or less uniformly in the lipids that form cell membranes. Recent insights into membrane physiology suggest that the plasma membrane impacts the function of membrane proteins mediating insulin action. Furthermore, membrane disturbances may be the basis of insulin resistance. Relevant insulin signal transduction data in terms of plasma membrane and insulin resistance are the focus of this review. The discussion visits the cell membrane hypothesis of insulin resistance that suggests insulin action could be related to changes in cell membrane properties.  相似文献   

13.
Emerging evidences demonstrate that excess aldosterone and insulin interact at target tissues. It has been shown that increased levels of aldosterone contribute to the development of insulin resistance and thus act as a risk factor for the development of type-2 diabetes mellitus. However, the molecular mechanisms involved in this scenario are yet to be identified. This study was designed to assess the dose-dependent effects of aldosterone on insulin signal transduction and glucose oxidation in the skeletal muscle (gastrocnemius) of adult male rat. Healthy adult male albino rats of Wistar strain (Rattus norvegicus) weighing 180?C200?g were used in this study. Rats were divided into four groups. Group I: control (treated with 1?% ethanol only), group II: aldosterone treated (10???g /kg body weight, twice daily for 15?days), group III: aldosterone treated (20???g /kg body weight, twice daily for 15?days), and group IV: aldosterone treated (40???g/kg body weight, twice daily for 15?days). Excess aldosterone caused glucose intolerance in a dose-dependent manner. Serum insulin and aldosterone were significantly increased, whereas serum testosterone was decreased. Aldosterone treatment impaired the rate of glucose uptake, oxidation, and insulin signal transduction in the gastrocnemius muscle through defective expression of IR, IRS-1, Akt, AS160, and GLUT4 genes. Phosphorylation of IRS-1, ??-arrestin-2, and Akt was also reduced in a dose-dependent manner. Excess aldosterone results in glucose intolerance as a result of impaired insulin signal transduction leading to decreased glucose uptake and oxidation in skeletal muscle. In addition to this, it is inferred that excess aldosterone may act as one of the causative factors for the onset of insulin resistance and thus increased incidence of type-2 diabetes.  相似文献   

14.
A new impermeant photoaffinity label has been used for identifying cell surface glucose transporters in isolated rat adipose cells. This compound is 2-N-4(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannos-4- yloxy)-2- propylamine. We have used this reagent in combination with immunoprecipitation by specific antibodies against the GLUT4 and GLUT1 glucose transporter isoforms to estimate the relative abundance of these two transporters on the surface of the intact adipose cell following stimulation by insulin and phorbol 12-myristate 13-acetate (PMA). In the basal state, GLUT4 and GLUT1 are both present at the cell surface but GLUT4 is more abundant than GLUT1. In response to insulin, GLUT4 increases 15-20-fold and GLUT1 increases approximately 5-fold while 3-O-methyl-D-glucose transport is stimulated 20-30-fold. By contrast, PMA only induces a approximately 4-fold increase in GLUT4 while GLUT1 increases approximately 5-fold to the same level as seen with insulin. In addition, PMA stimulates 3-O-methyl-D-glucose transport approximately 3-fold to only 13% of the insulin-stimulated state. Thus GLUT4 is the major glucose transporter isoform under all conditions, and it is selectively and markedly enriched in response to insulin but not PMA which increases GLUT1 and GLUT4 equally. Furthermore, stimulation of glucose transport activity correlates closely with the appearance of GLUT4 on the cell surface in response to both insulin and PMA but does not correlate with the sum of GLUT1 and GLUT4 appearance. These results suggest that GLUT4 may be inherently more active than GLUT1 due to a higher TK (turnover/Km).  相似文献   

15.
One of the most important metabolic actions of insulin is catalysing glucose uptake into skeletal muscle and adipose tissue. This is accomplished via activation of the phosphatidylinositol-3-kinase/Akt signalling pathway and subsequent translocation of GLUT4 from intracellular storage vesicles to the plasma membrane. As such, this represents an ideal system for studying the convergence of signal transduction and protein trafficking. The GLUT4 translocation process is complex, but can be dissected into at least four discrete trafficking steps. This raises the question as to which of these is the major regulated step in insulin-stimulated GLUT4 translocation. Numerous molecules have been reported to regulate GLUT4 trafficking. However, with the exception of TBC1D4, the molecular details of these distal signalling arms of the insulin signalling network and how they modify distinct steps of GLUT4 trafficking have not been established. We discuss the need to adopt a more global approach to expand and deepen our understanding of the molecular processes underpinning this system. Strategies that facilitate the generation of detailed models of the entire insulin signalling network will enable us to identify the critical nodes that control GLUT4 traffic and decipher emergent properties of the system that are not currently apparent.  相似文献   

16.
葡萄糖转运子4 转位信号转导通路的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
葡萄糖是大部分细胞主要能量来源,它进入细胞的过程在生命的维持中无疑成为一个重要的步骤。而葡萄糖进入细胞是依赖于这些细胞上的葡萄糖转运子和相应的对其进行调节的因子。葡萄糖转运子4(GLUT4)在糖进入细胞维持血糖平衡中起了重要的作用。近年有关GLUT4的研究文献很多,但却总给人不系统的感觉。本文对GLUT4转位的胰岛素依赖和非胰岛素依赖的信号途径以及其远端过程及机制作一综述,同时分析了GLUT4转位的信号途径的研究中存在的问题和将来研究的方向。  相似文献   

17.
Endothelin-1 (ET-1) disrupts insulin-regulated glucose transporter GLUT4 trafficking. Since the negative consequence of chronic ET-1 exposure appears to be independent of signal disturbance along the insulin receptor substrate-1/phosphatidylinositol (PI) 3-kinase (PI3K)/Akt-2 pathway of insulin action, we tested if ET-1 altered GLUT4 regulation engaged by osmotic shock, a PI3K-independent stimulus that mimics insulin action. Regulation of GLUT4 by hyperosmotic stress was impaired by ET-1. Because of the mutual disruption of both insulin- and hyperosmolarity-stimulated GLUT4 translocation, we tested whether shared signaling and/or key phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated cytoskeletal events of GLUT4 trafficking were targets of ET-1. Both insulin and hyperosmotic stress signaling to Cbl were impaired by ET-1. Also, plasma membrane PIP2 and cortical actin levels were reduced in cells exposed to ET-1. Exogenous PIP2, but not PI 3,4,5-bisphosphate, restored actin structure, Cbl activation, and GLUT4 translocation. These data show that ET-1-induced PIP2/actin disruption impairs GLUT4 trafficking elicited by insulin and hyperosmolarity. In addition to showing for the first time the important role of PIP2-regulated cytoskeletal events in GLUT4 regulation by stimuli other than insulin, these studies reveal a novel function of PIP2/actin structure in signal transduction.  相似文献   

18.
19.
Insulin stimulates glucose uptake in fat and muscle by redistributing GLUT4 glucose transporters from intracellular membranes to the cell surface. We previously proposed that, in 3T3-L1 adipocytes, TUG retains GLUT4 within unstimulated cells and insulin mobilizes this retained GLUT4 by stimulating its dissociation from TUG. Yet the relative importance of this action in the overall control of glucose uptake remains uncertain. Here we report that transient, small interfering RNA-mediated depletion of TUG causes GLUT4 translocation and enhances glucose uptake in unstimulated 3T3-L1 adipocytes, similar to insulin. Stable TUG depletion or expression of a dominant negative fragment likewise stimulates GLUT4 redistribution and glucose uptake, and insulin causes a 2-fold further increase. Microscopy shows that TUG governs the accumulation of GLUT4 in perinuclear membranes distinct from endosomes and indicates that it is this pool of GLUT4 that is mobilized by TUG disruption. Interestingly, in addition to translocating GLUT4 and enhancing glucose uptake, TUG disruption appears to accelerate the degradation of GLUT4 in lysosomes. Finally, we find that TUG binds directly and specifically to a large intracellular loop in GLUT4. Together, these findings demonstrate that TUG is required to retain GLUT4 intracellularly in 3T3-L1 adipocytes in the absence of insulin and further implicate the insulin-stimulated dissociation of TUG and GLUT4 as an important action by which insulin stimulates glucose uptake.  相似文献   

20.
Osteosarcoma is the most common type of malignant bone cancer, accounting for 35% of primary bone malignancies. Because cancer cells utilize glucose as their primary energy substrate, the expression and regulation of glucose transporters (GLUT) may be important in tumor development and progression. GLUT expression has not been studied previously in human osteosarcoma cell lines. Furthermore, although insulin and insulin-like growth factor (IGF-I) play an important role in cell proliferation and tumor progression, the role of these hormones on GLUT expression and glucose uptake, and their possible relation to osteosarcoma, have also not been studied. We determined the effect of insulin and IGF-I on GLUT expression and glucose transport in three well-characterized human osteosarcoma cell lines (MG-63, SaOs-2, and U2-Os) using immunocytochemical, RT-PCR and functional kinetic analyses. Furthermore we also studied GLUT isoform expression in osteosarcoma primary tumors and metastases by in situ hybridization and immunohistochemical analyses. RT-PCR and immunostaining show that GLUT1 is the main isoform expressed in the cell lines and tissues studied, respectively. Immunocytochemical analysis shows that although insulin does not affect levels of GLUT1 expression it does induce a translocation of the transporter to the plasma membrane. This translocation is associated with increased transport of glucose into the cell. GLUT1 is the main glucose transporter expressed in osteosarcoma, furthermore, this transporter is regulated by insulin in human MG-63 cells. One possible mechanism through which insulin is involved in cancer progression is by increasing the amount of glucose available to the cancer cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号