首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated thatacclimatization to high altitude elicits increased sympathetic nerveactivity in men. The purpose of this investigation was todetermine 1) whether women respondin a similar manner as found previously in men and 2) the extent to which menstrualcycle phase influences this response. Sixteen eumenorrheic women (age,23.6 ± 1.2 yr; weight, 56.2 ± 4.3 kg) were studied at sea leveland during 12 days of high-altitude exposure (4,300 m) in either theirfollicular (F; n = 11) or luteal (L;n = 5) phase. Twenty-four-hour urinesamples were collected at sea level and during each day at altitude.Catecholamines were determined by high-performance liquidchromatography with electrochemical detection. Compared with sea-levelvalues, urinary norepinephrine excretion increased significantly duringaltitude exposure, peaking on days4-6. Thereafter, levels remained constantthroughout the duration of altitude exposure. The magnitude of thisincrease was similar between the F (138%) and L (93%)phase. Urinary epinephrine levels were elevated onday 2 of altitude exposure comparedwith sea-level values for both F and L subjects (93%). Thereafter, urinary epinephrine excretion returned to sea-level values, and nodifferences were found between F and L subjects. Plasma catecholamine content was consistent with urinary values and supports the concept ofan elevation in sympathetic activity over time at altitude. Mean anddiastolic blood pressure as well as heart rate adjustments to highaltitude correlated significantly with urinary norepinephrine excretionrates. It was concluded that 1)urinary and plasma catecholamine responses to 12 days of high-altitudeexposure in women are similar to those previously documented to occurfor men; 2) whereas no differencesin catecholamine levels were observed between F- and L-phaseassignments, for a given urinary norepinephrine excretion rate, bloodpressure and heart rates were lower for F vs. L subjects; and3) several cardiovascularadaptations associated with high-altitude exposure correlated with 24-hurinary norepinephrine excretion rates and thus sympathetic nerveactivity.

  相似文献   

2.
3.
Increased dependence on blood glucose after acclimatization to 4,300 m   总被引:5,自引:0,他引:5  
To evaluate the hypothesis that altitude exposure and acclimatization result in increased dependency on blood glucose as a fuel, seven healthy males (23 +/- 2 yr, 72.2 +/- 1.6 kg, mean +/- SE) on a controlled diet were studied in the postabsorptive condition at sea level (SL), on acute altitude exposure to 4,300 m (AA), and after 3 wk of chronic altitude exposure to 4,300 m (CA). Subjects received a primed continuous infusion of [6,6-2D]glucose and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the SL maximal O2 consumption (VO2 max; 65 +/- 2% of altitude VO2 max). At SL, resting arterial glucose concentration was 82.4 +/- 3.2 mg/dl and rose significantly to 91.2 +/- 3.2 mg/dl during exercise. Resting glucose appearance rate (Ra) was 1.79 +/- 0.02 mg.kg-1.min-1; this increased significantly during exercise at SL to 3.71 +/- 0.08 mg.kg-1.min-1. On AA, resting arterial glucose concentration (85.8 +/- 4.1 mg/dl) was not different from sea level, but Ra (2.11 +/- 0.14 mg.kg-1.min-1) rose significantly. During exercise on AA, glucose concentration rose to levels seen at SL (91.4 +/- 3.0 mg/dl), but Ra increased more than at SL (to 4.85 +/- 0.15 mg.kg-1.min-1; P less than 0.05). Resting arterial glucose was significantly depressed with CA (70.8 +/- 3.8 mg/dl), but resting Ra increased to 3.59 +/- 0.08 mg.kg-1.min-1, significantly exceeding SL and AA values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Eight, University of Missouri (230 m) college women were exposed for a period of 65 days to an elevation of 4,300 m on Pikes Peak. During the first week of altitude exposure marked increases in the serum levels of chloride, phosphate, proteinate and calcium and marked decreases in the serum levels of sodium, potassium, magnesium and estimated bicarbonate were observed. During the remainder of the altitude sojourn chloride, phosphate, potassium and magnesium reverted toward the initial low altitude value. Serum calcium levels, however, remained elevated during this latter period while sodium levels continued to decrease and proteinate levels continued to increase. There was little or no recovery of the estimated bicarbonate decrement as the period of exposure was prolonged. Two weeks after the subjects returned to Missouri some but not all of the electrolytes returned to their initial levels. Those not recovering completely included calcium, chloride, proteinate and estimated bicarbonate.
Zusammenfassung Bei acht Studentinnen der Universität von Missouri (230 m) wurden 65 Tage in der Station Pikes Peak (4.300 m) die Elektrolyte im Serum untersucht. Während der 1. Höhenwoche wurde ein deutlicher Anstieg des Chlorids, Phosphats, Proteinats und Calciums und ein deutlicher Abfall des Natriums, Kaliums, Magnesiums und berechneten Bikarbonats im Serum gefunden. In den folgenden Wochen kehrten die Werte des Chlorids, Phosphats, Kalium und Magnesium zu den Werten vor dem Übergang in die Höhe zurück. Der Calciumspiegel blieb dauernd erhöht, der Natriumspiegel fiel weiter ab, und der Proteinatspiegel stieg weiter an. Eine Verbesserung des Bikarbonatspiegels fand nicht statt. Zwei Wochen nach Rückkehr von der Höhe waren fast alle Elektrolytwerte wieder normal ausser Calcium Chlorid, Proteinat und Bikarbonat im Serum.

Resume Huit étudiantes de l'université du Missouri (230 m d'altitude) ont séjourné durant 65 jours à Pikes Peak (4.300 m d'altitude). Durant ce laps de temps, on a analysé régulièrement les électrolytes du sérum sanguin. Durant la première semaine de leur séjour en altitude, on a constaté une nette augmentation des chlorires, des phosphates, des protéinates et du calcium ainsi qu'une diminution marquée du sodium, de la potasse, du magnésium et de la valeur calculée du bicarbonate. Au cours des semaines suivantes, la valeur des chlorures, des phosphates, de la potasse et du magnésium s'est rétablie au niveau précédant la montée en altitude. Le taux de calcium est resté élevé alors que celui du sodium a continué de baisser et celui des protéinates à s'élever. On n'a pas constaté d'amélioration du taux de bicarbonate. Deux semaines après le retour en plaine, presque toutes les valeurs des électrolytes étaient redevenues normales dans le sérum, à l'exception de celles du chlorure de calcium, des proteinates et du bicarbonate.
  相似文献   

5.
We hypothesized that the increased exercise arterial lactate concentration on arrival at high altitude and the subsequent decrease with acclimatization were caused by changes in blood lactate flux. Seven healthy men [age 23 +/- 2 (SE) yr, wt 72.2 +/- 1.6 kg] on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-2D]glucose (Brooks et al. J. Appl. Physiol. 70:919-927, 1991) and [3-13C]lactate and rested for a minimum of 90 min followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 consumption (VO2peak; 65 +/- 2% of both acute altitude and acclimatization). During rest at sea level, lactate appearance rate (Ra) was 0.52 +/- 0.03 mg.kg-1.min-1; this increased sixfold during exercise to 3.24 +/- 0.19 mg.kg-1.min-1. On acute exposure, resting lactate Ra rose from sea level values to 2.2 +/- 0.2 mg.kg-1.min-1. During exercise on acute exposure, lactate Ra rose to 18.6 +/- 2.9 mg.kg-1.min-1. Resting lactate Ra after acclimatization (1.77 +/- 0.25 mg.kg-1.min-1) was intermediate between sea level and acute exposure values. During exercise after acclimatization, lactate Ra (9.2 +/- 0.7 mg.kg-1.min-1) rose from resting values but was intermediate between sea level and acute exposure values. The increased exercise arterial lactate concentration response on arrival at high altitude and subsequent decrease with acclimatization are due to changes in blood lactate appearance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Because the ovarian steroid hormones, progesterone and estrogen, have higher blood levels in the luteal (L) than in the follicular (F) phase of the menstrual cycle, and because of their known effects on ventilation and hematopoiesis, we hypothesized that less hypoxemia and less erythropoiesis would occur in the L than the F phase of the cycle after arrival at altitude. We examined erythropoiesis with menstrual cycle phase in 16 women (age 22.6 +/- 0.6 yr). At sea level, 11 of 16 women were studied during both menstrual cycle phases, and, where comparison within women was available, cycle phase did not alter erythropoietin (n = 5), reticulocyte count (n = 10), and red cell volume (n = 9). When all 16 women were taken for 11 days to 4,300-m altitude (barometric pressure = 462 mmHg), paired comparisons within women showed no differences in ovarian hormone concentrations at sea level vs. altitude on menstrual cycle day 3 or 10 for either the F (n = 11) or the L (n = 5) phase groups. Arterial oxygen saturation did not differ between the F and L groups at altitude. There were no differences by cycle phase on day 11 at 4,300 m for erythropoietin [22.9 +/- 4.7 (L) vs. 18.8 +/- 3.4 mU/ml (F)], percent reticulocytes [1.9 +/- 0.1 (L) vs. 2.1 +/- 0.3% (F)], hemoglobin [13.5 +/- 0.3 (L) vs. 13.7 +/- 0.3 g/100 ml (F)], percent hematocrit [40.6 +/- 1.4 (L) vs. 40.7 +/- 1.0% (F)], red cell volume [31.1 +/- 3.6 (L) vs. 33.0 +/- 1.6 ml/kg (F)], and blood ferritin [8.9 +/- 1.7 (L) vs. 10.2 +/- 0.9 microg/l (F)]. Blood level of erythropoietin was related (r = 0.77) to arterial oxygen saturation but not to the levels of progesterone or estradiol. We conclude that erythropoiesis was not altered by menstrual cycle phase during the first days at 4,300-m altitude.  相似文献   

7.
Arterial O2 saturation (Sao2) decreases in hypoxia in the transition from rest to moderate exercise, but it is unknown whether other several weeks at high altitude SaO2 in submaximal exercise follows the same time course and pattern as that of ventilatory acclimatization in resting subjects. Ventilatory acclimatization is essentially complete after approximately 1 wk at 4,300 m, such that improvement in submaximal exercise SaO2 would then require other mechanisms. On days 2, 8, and 22 on Pikes Peak (4,300 m), 6 male subjects performed prolonged steady-state cycle exercise at 79% maximal O2 uptake (VO2 max). Resting SaO2 rose from day 1 (78.4 +/- 1.6%) to day 8 (87.5 +/- 1.4%) and then did not increase further by day 20 (86.4 +/- 0.6%). During exercise, SaO2 values (mean of 5-, 15-, and 30-min measurements) were 72.7% (day 2), 78.6% (day 8), and 82.3% (day 22), meaning that all of the increase in resting SaO2 occurred from day 1 to day 8, but exercise SaO2 increased from day 2 to day 8 (5.9%) and then increased further from day 8 to day 22 (3.7%). On day 22, the exercise SaO2 was higher than on day 8 despite an unchanged ventilation and O2 consumption. The increased exercise SaO2 was accompanied by decreased CO2 production. The mechanisms responsible for the increased exercise SaO2 require further investigation.  相似文献   

8.
Cerebral blood flow and O2 delivery during exercise are important for well-being at altitude but have not been studied. We expected flow to increase on arrival at altitude and then to fall as O2 saturation and hemoglobin increased, thereby maintaining cerebral O2 delivery. We used Doppler ultrasound to measure internal carotid artery flow velocity at sea level and on Pikes Peak, CO (4,300 m). In an initial study (1987, n = 7 men) done to determine the effect of brief (5-min) exercises of increasing intensity, we found at sea level that velocity [24.8 +/- 1.4 (SE) cm/s rest] increased by 15 +/- 7, 30 +/- 6, and 22 +/- 8% for cycle exercises at 33, 71, and 96% of maximal O2 uptake, respectively. During acute hypobaric hypoxia in a decompression chamber (inspired PO2 = 83 Torr), velocity (23.2 +/- 1.4 cm/s rest) increased by 33 +/- 6, 20 +/- 5, and 17 +/- 9% for exercises at 45, 72, and 98% of maximal O2 uptake, respectively. After 18 days on Pikes Peak (inspired PO2 = 87 Torr), velocity (26.6 +/- 1.5 cm/s rest) did not increase with exercise. A subsequent study (1988, n = 7 men) of the effect of prolonged exercise (45 min at approximately 100 W) found at sea level that velocity (24.8 +/- 1.7 cm/s rest) increased by 22 +/- 6, 13 +/- 5, 17 +/- 4, and 12 +/- 3% at 5, 15, 30, and 45 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Some human newborns have a syndrome characterized by irreversible pulmonary hypertension and severe hypoxemia and by medial hypertrophy and adventitial thickening of pulmonary arteries. We considered that newborn calves made severely hypoxic might reproduce features of the human disease. When 2-day-old calves were placed at 4,300 m simulated altitude, pulmonary arterial pressure was increased and could be reversed by 100% O2. However, after 2 wk at 4,300 m, pulmonary arterial pressures were suprasystemic and there was right-to-left shunting probably through the foramen ovale and a patent but restrictive ductus arteriosus. Suprasystemic pulmonary pressure and hypoxemia persisted with 100% O2 breathing. Morphometrical examination of the lung arteries showed a markedly thickened adventitia with cellular proliferation and collagen and elastin deposition. There was increased medial thickness and distal muscularization of the pulmonary arteries associated with decreased luminal diameter. The rapid development of severe pulmonary hypertension and poor responsiveness to O2 was associated with increased arterial wall thickness, particularly involving the adventitia. Thus the pulmonary arterial circulation in these calves, which were placed at high altitude for 2 wk, exhibited features resembling persistent pulmonary hypertension in newborn infants.  相似文献   

11.
Chen, Qiu-Hong, Ri-Li Ge, Xiao-Zhen Wang, Hui-Xin Chen,Tian-Yi Wu, Toshio Kobayashi, and Kazuhiko Yoshimura. Exercise performance of Tibetan and Han adolescents at altitudes of 3,417 and4,300 m. J. Appl. Physiol. 83(2):661-667, 1997.The difference was studied betweenO2 transport in lifelong Tibetanadolescents and in newcomer Han adolescents acclimatized to highaltitude. We measured minute ventilation, maximalO2 uptake, maximal cardiac output,and arterial O2 saturation duringmaximal exercise, using the incremental exercise technique, ataltitudes of 3,417 and 4,300 m. The groups were well matched for age,height, and nutritional status. The Tibetans had been living at thealtitudes for a longer period than the Hans (14.5 ± 0.2 vs. 7.8 ± 0.8 yr at 3,417 m, P < 0.01; and 14.7 ± 0.3 vs. 5.3 ± 0.7 yr at 4,300 m,P < 0.01, respectively). At rest,Tibetans had significantly greater vital capacity and maximal voluntaryventilation than the Hans at both altitudes. At maximal exercise,Tibetans compared with Hans had higher maximalO2 uptake (42.2 ± 1.7 vs. 36.7 ± 1.2 ml · min1 · kg1at 3,417 m, P < 0.01; and 36.8 ± 1.9 vs. 30.0 ± 1.4 ml · min1 · kg1at 4,300 m, P < 0.01, respectively)and greater maximal cardiac output (12.8 ± 0.3 vs. 11.4 ± 0.2 l/min at 3,417 m, P < 0.01; 11.5 ± 0.5 vs. 10.0 ± 0.5 l/min at 4,300 m,P < 0.05, respectively). Althoughthe differences in arterial O2saturation between Tibetans and Hans were not significant at rest andduring mild exercise, the differences became greater with increases inexercise workload at both altitudes. We concluded that exposure to highaltitude from birth to adolescence resulted in an efficientO2 transport and a greater aerobicexercise performance that may reflect a successful adaptation to lifeat high altitude.

  相似文献   

12.
13.
Few environments challenge human populations more than high altitude, since the accompanying low oxygen pressures (hypoxia) are pervasive and impervious to cultural modification. Work capacity is an important factor in a population's ability to thrive in such an environment. The performance of work or exercise is a measure of the integrated functioning of the O2 transport system, with maximal O2 uptake (VO) a convenient index of that function. Hypoxia limits the ability to transport oxygen: maximal O2 uptake decreases with ascent to high altitude, and years of high altitude residence do not restore sea level VO values. Since Tibetans live and work at some of the highest altitudes in the world, their ability to exercise at very high altitude (<4,000 m) may define the limits of human adaptation to hypoxia. We transported 20 Tibetan lifelong residents of ≥4,400 m down to 3,658 m in order to compare them with 16 previously studied Tibetan residents of Lhasa (3,658 m). The two groups of Tibetans were matched for age, weight, and height. All studies were performed in Lhasa within 3 days of the 4,400 m Tibetans' arrival. Standard test protocol and criteria were used for attaining VO on a Monark bicycle ergometer, while measuring oxygen uptake (VO2, ml/kg − min STPD), heart rate (bpm), minute ventilation (VE, 1/min BTPS), and arterial oxygen saturation (Sa, %). The 4,400 m compared with 3,658 m residents had, at maximal effort, similar VO2 (48.5 ± 1.2 vs. 51.2 ± 1.4 ml/kg − min, P = NS), higher workload attained (211 ± 6 vs. 177 ± 7 watts, P < 0.01), lower heart rate (176 ± 2 vs. 191 ± 2 bpm, P < 0.01), lower ventilation (127 ± 5 vs. 149 ± 5 l/min BTPS, P < 0.01), and similar Sa(81.9 ± 1.0 vs. 83.7 ± 1.2%, P = NS). Furthermore, over the range of submaximal workloads, 4,400 m compared with 3,658 m Tibetans had lower VO2 (P < 0.01), lower heart rates (P < 0.01), and lower ventilation (P < 0.01) and Sa (P < 0.05). We conclude that Tibetans living at 4,400 m compared with those residing at 3,658 m achieve greater work performance for a given VO2 at submaximal and maximal workloads with less cardiorespiratory effort. Am J Phys Anthropol 105:21–31, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The purpose of the present study was to determine the effect of sojourn at high altitude on cerebral electrical activity. Electroencephalographic (EEG) and visual evoked responses (VER) were recorded from seven healthy males under the following conditions: 1) during the first 2-3 h at 4,300 m altitude when Pao2 was maintained at 90 mmHg (control condition), 2) during the first 2-3 h of hypoxia (Pao2 = 40 mmHg), and 3) at 24- to 48-h intervals during the first 9-12 days of hypoxia. Electrode placement was according to the 10-20 International Electrode System. The VER was recorded from an electrode at the inion referred to the left ear. We found no significant changes from control cerebral electrical activity during the first 2-3 h of hypoxia. One subject's VER amplitude was greater than control on the 2nd and 3rd days of hypoxia and a similar change from control was consistently evident in a second subject beginning the 5th day of hypoxia. These changes suggest cortical depression. After the 5th day changes occurred in the remaining subjects which would be consistent with cortical excitation. In three subjects, EEG frequency was increased, amplitude decreased, and/or spiking became evident. In four subjects VER amplitude was reduced. Our findings provide support for the hypothesis that certain behavioral and physiological changes induced by sojourn at altitude could be caused by alterations in central nervous system function.  相似文献   

15.
Anesthetized mechanically ventilated rabbits were subjected to progressive hypoxemia (n = 7) to determine the relationship of venous PO2 (PvO2) to skeletal muscle PO2 (PtiO2). Measures of arterial PO2 (PaO2), right atrial PO2 [(PvO2)RA], and hindlimb PO2 [(PvO2)limb], were obtained from the carotid artery, right atrium, and inferior vena cava, just above the level of the iliac bifurcation. Biceps femoris muscle PtiO2 was measured with a surface O2 microelectrode having eight measuring points. PaO2 was decreased from 90.3 +/- 5.4 to 26.8 +/- 0.8 Torr in five consecutive steps, followed by reoxygenation to 105.6 +/- 10.5 (SE) Torr. Measurements were obtained after each decrement in PaO2. A total of 128 measures of PtiO2 were obtained per experimental stage. The mean and distribution of the muscle PtiO2 histogram were determined. Measurements were compared with analysis of variance and the Newman-Keuls post hoc method. (PvO2)limb had similar values as the average muscle PtiO2 (PtiO2) for PaO2 values greater than 52.1 +/- 4.3 Torr, where (PvO2)limb became greater than PtiO2 (P less than 0.05). The lowest measures of (PvO2)limb and PtiO2 were 15.9 +/- 0.7 and 4.0 +/- 0.1 Torr, respectively (P less than 0.01). The PtiO2 histograms showed no evidence of increased microvascular heterogeneity with hypoxemia. We conclude that in hypoxemia PvO2 is greater than muscle PtiO2. This difference may be related to the establishment of significant physicochemical O2 gradients from erythrocyte to tissue cell.  相似文献   

16.
17.
We hypothesized that the increased blood glucose disappearance (Rd) observed during exercise and after acclimatization to high altitude (4,300 m) could be attributed to net glucose uptake (G) by the legs and that the increased arterial lactate concentration and rate of appearance (Ra) on arrival at altitude and subsequent decrease with acclimatization were caused by changes in net muscle lactate release (L). To evaluate these hypotheses, seven healthy males [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg], on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-D2]glucose (Brooks et al., J. Appl. Physiol. 70: 919-927, 1991) and [3-13C]lactate (Brooks et al., J. Appl. Physiol. 71:333-341, 1991) and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 uptake (65 +/- 2% of both acute altitude and acclimatization peak O2 uptake). Glucose and lactate arteriovenous differences across the legs and arms and leg blood flow were measured. Leg G increased during exercise compared with rest, at altitude compared with sea level, and after acclimatization. Leg G accounted for 27-36% of Rd at rest and essentially all glucose Rd during exercise. A shunting of the blood glucose flux to active muscle during exercise at altitude is indicated. With acute altitude exposure, at 5 min of exercise L was elevated compared with sea level or after acclimatization, but from 15 to 45 min of exercise the pattern and magnitude of L from the legs varied and followed neither the pattern nor the magnitude of responses in arterial lactate concentration or Ra. Leg L accounted for 6-65% of lactate Ra at rest and 17-63% during exercise, but the percent Ra from L was not affected by altitude. Tracer-measured lactate extraction by legs accounted for 10-25% of lactate Rd at rest and 31-83% during exercise. Arms released lactate under all conditions except during exercise with acute exposure to high altitude, when the arms consumed lactate. Both active and inactive muscle beds demonstrated simultaneous lactate extraction and release. We conclude that active skeletal muscle is the predominant site of glucose disposal during exercise and at high altitude but not the sole source of blood lactate during exercise at sea level or high altitude.  相似文献   

18.
Morning levels of serum melatonin, FSH, LH, prolactin (PRL), progesterone and estradiol were studied by RIA during the ovarian cycle, perimenopause and menopause in 79 healthy women. FSH and LH levels showed a slight nonsignificant increase from the fertile period to perimenopause, exhibiting a significantly greater increase during menopause. PRL, progesterone and estradiol showed parallel changes, reaching lower levels during menopause. Serum melatonin levels decreased with age, attaining minimum levels in menopause. FSH and estradiol were significantly correlated with melatonin in the follicular phase, while in the luteal phase a negative correlation was found between melatonin, progesterone and estradiol. No significant correlations were noted between serum hormone levels during the perimenopausal period. In menopause, as during the follicular phase, melatonin and FSH were negatively correlated. As expected, a significant positive correlation was found between morning serum levels of melatonin and nocturnal urinary excretion of this indoleamine in all groups studied.  相似文献   

19.
The incidence of cardiovascular disease (CAD) differs between men and women, in part because of differences in risk factors and hormones. This sexual dimorphism means a lower incidence in atherosclerotic diseases in premenopausal women, which subsequently rises in postmenopausal women to eventually equal that of men. These observations point towards estrogen and progesterone playing a lifetime protective role against CAD in women. As exogenous estrogen and estrogen plus progesterone preparations produce significant reductions in low-density lipoprotein (LDL) cholesterol levels and significant increases in high-density lipoprotein (HDL) cholesterol, this should in theory lower the risk of CAD. However, results from oral contraceptive (OC) use and combined estrogen and progesterone hormone replacement therapy (HRT) have suggested that hormone replacement regimes do not provide cardiovascular protection. In fact, depending on the preparation and the presence or absence of genetic risk factors, an increased risk of cardiovascular diseases such as venous thrombosis, myocardial infarction (MI) and stroke have been observed. Interestingly, in the majority of studies the increase in risk was highest in the first year, after which an increase in risk was not observed, and in some studies a lower risk of CAD was evident after four or five years of exogenous hormone administration. While the debate continues about the merits of HRT, and several good reviews exist on the statistics of CAD in relation to exogenous hormones, we have decided to review the literature to piece together the physiological actions of estrogen and progesterone preparations on the individual mechanistic components leading to CAD; namely, the altered endothelium and the haemostatic balance between coagulation and fibrinolysis. We present possible mechanisms for how HRT and OCs protect against MI in the absence of cardiovascular risk factors but increase the incidence of MI in their presence. We also speculate on the roles played by hormones on the short- and long-term risks of cardiovascular disease.  相似文献   

20.
The indicator fractionation technique with [86Rb]rubidium chloride as the indicator was used to determine the relative blood flow (RBF) as a measure of capillary blood flow in the ovaries of conscious, hormonally treated, anoestrous ewes. Treatment of ewes with either progesterone only or oestradiol only had no effect on ovarian RBF, but treatment with oestradiol subsequent to progesterone caused a significant increase (P less than 0.001). Consequently, it appears that progesterone-induced sensitivity of the ovarian vasculature to the vasodilatory effects of oestradiol may be responsible for increased ovarian blood flow around oestrus in cyclic ewes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号