首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that normal arterial PCO2 can be maintained during apnea in anesthetized dogs by delivering a continuous stream of inspired ventilation through cannulas aimed down the main stem bronchi, although this constant-flow ventilation (CFV) was also associated with a significant increase in ventilation-perfusion (VA/Q) inequality, compared with conventional mechanical ventilation (IPPV). Conceivably, this VA/Q inequality might result from differences in VA/Q ratios among lobes caused by nonuniform distribution of ventilation, even though individual lobes are relatively homogeneous. Alternatively, the VA/Q inequality may occur at a lobar level if those factors causing the VA/Q mismatch also existed within lobes. We compared the efficiency of gas exchange simultaneously in whole lung and left lower lobe by use of the multiple inert gas elimination technique in nine anesthetized open-chest dogs. Measurements of whole lung and left lower lobe gas exchange allowed comparison of the degree of VA/Q inequality within vs. among lobes. During IPPV with positive end-expiratory pressure, arterial PO2 and PCO2 (183 +/- 41 and 34.3 +/- 3.1 Torr, respectively) were similar to lobar venous PO2 and PCO2 (172 +/- 64 and 35.7 +/- 4.1 Torr, respectively; inspired O2 fraction = 0.44 +/- 0.02). Switching to CFV (3 l.kg-1.min-1) decreased arterial PO2 (112 +/- 26 Torr, P less than 0.001) and lobar venous PO2 (120 +/- 27 Torr, P less than 0.01) but did not change the shunt measured with inert gases (P greater than 0.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
To identify a general relationship between eucapnic oscillatory flow (Vosc) and frequency (f) in high-frequency ventilation (HFV), we searched the literature for eucapnic HFV data in different mammalian species. We found suitable results for rat, rabbit, monkey, dog, human, and horse, which we expressed in terms of two dimensionless variables, Q = Vosc/Va and F = f/(VA/VD), with VA the alveolar ventilation and VD the volume of the conducting airways. The experimental HFV data define the linear regression equation in Q = 0.54 In F + 0.92 (R = 0.94). Krogh's equation for conventional ventilation (CV), Vosc = VA + fVD, in dimensionless terms becomes Q = 1 + F, which is valid for low F. The intersection of the CV and HFV equations at F = 5.0 defines a transition frequency, ft = 5.0 (VA/VD). At that point the alveolar ventilation per breath, VA/f, represents 20% of VD, and tidal volume (VT) equals 1.20 VD. For eucapnia ft ranges from 5.9 Hz in the rat to 0.9 Hz in the dog. The dimensional form of our HFV equation, VA = 0.13 (VT/VD)1.2 (VTf) is very similar to other empirical equations reported for dogs in noneucapnic settings. Therefore the dimensionless equation should also be valid within a species at noneucapnic settings.  相似文献   

3.
Endotoxin increases ventilation-to-perfusion ratio (VA/Q) heterogeneity in the lung, but the precise changes in alveolar ventilation (VA) and perfusion that lead to VA/Q heterogeneity are unknown. The purpose of this study was to determine how endotoxin affects the distributions of ventilation and perfusion and the impact of these changes on VA/Q heterogeneity. Seven anesthetized, mechanically ventilated juvenile pigs were given E. coli endotoxin intravenously, and regional ventilation and perfusion were measured simultaneously by using aerosolized and injected fluorescent microspheres. Endotoxemia significantly decreased the correlation between regional ventilation and perfusion, increased perfusion heterogeneity, and redistributed perfusion between lung regions. In contrast, ventilation heterogeneity did not change, and redistribution of ventilation was modest. The decrease in correlation between regional ventilation and perfusion was responsible for significantly more VA/Q heterogeneity than were changes in ventilation or perfusion heterogeneity. We conclude that VA/Q heterogeneity increases during endotoxemia primarily as a result of the decrease in correlation between regional ventilation and perfusion, which is in turn determined primarily by changes in perfusion.  相似文献   

4.
Ventilation-perfusion (VA/Q) inhomogeneity was modeled to measure its effect on arterial oxygenation during maintenance-phase anesthesia involving an inspired mixture of 30% O(2) and either N(2)O or N(2). A multialveolar compartment computer model was constructed based on a log normal distribution of VA/Q inhomogeneity. Increasing the log SD of the distribution of blood flow from 0 to 1.75 produced a progressive fall in arterial PO(2) (Pa(O(2))). The fall was less steep in the presence of N(2)O than when N(2) was present instead. This was due mainly to the concentrating effect of N(2)O uptake on alveolar PO(2) in moderately low VA/Q compartments. The improvement in Pa(O(2)) when N(2)O was present instead of N(2) was greatest when the degree of VA/Q inhomogeneity was in the range typically seen in anesthetized patients. Models based on distributions of expired and inspired alveolar ventilation give quantitatively different results for Pa(O(2)). In the presence of VA/Q inhomogeneity, second-gas and concentrating effects may have clinically significant effects on arterial oxygenation even at "steady-state" levels of N(2)O uptake.  相似文献   

5.
Constant-flow ventilation (CFV) is achieved by delivering a constant stream of inspiratory gas through cannulas aimed down the main stem bronchi at flow rates totaling 1-3 l.kg-1.min-1 in the absence of tidal lung motion. Previous studies have shown that CFV can maintain a normal arterial PCO2, although significant ventilation-perfusion (VA/Q) inequality appears. This VA/Q mismatch could be due to regional differences in lung inflation that occur during CFV secondary to momentum transfer from the inflowing stream to resident gas in the lung. We tested the hypothesis that substitution of a gas with lower density might attenuate regional differences in alveolar pressure and reduce the VA/Q inequality during CFV. Gas exchange was studied in seven anesthetized dogs by the multiple inert gas elimination technique during ventilation with intermittent positive-pressure ventilation, CFV with O2-enriched nitrogen (CFV-N2), or CFV with O2-enriched helium (CFV-He). As an index of VA/Q inequality independent of shunt, the log SD blood flow increased from 0.757 +/- 0.272 during intermittent positive-pressure ventilation to 1.54 +/- 0.36 (P less than 0.001) during CFV-N2. Switching from CFV-N2 to CFV-He at the same flow rate did not improve log SD blood flow (1.45 +/- 0.21) (P greater than 0.05) but tended to increase arterial PCO2. In excised lungs with alveolar capsules attached to the pleural surface, CFV-He significantly reduced alveolar pressure differences among lobes compared with CFV-N2 as predicted. Regional alveolar washout of Ar after a stap change of inspired concentration was slower during CFV--He than during CFV-N2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Small catheters (ca. 3 mm diam at tip) were wedged in subsegmental bronchi in anesthetized coatimundi (Nasua nasua) during spontaneous breathing. Mixed expired gases of a group of lobules were sampled continuously without contamination from neighboring units, and local tidal volume, frequency, carbon dioxide production, and oxygen consumption were measured, as well as mixed venous PO2 and PCO2. Local ventilation-perfusion ratio, alveolar PO2, PCO2, and blood flow were calculated. There was a 22% reduction (range 15-38) in local perfusion (as percent of flow at PAO2 100 mmHg) per 10 mmHg fall in local alveolar oxygen tension over the PAO2 range 150-36 mmHg. Local hypercapnia had little effect on local flow. Local tidal volume (ca. 1% of total tidal volume) was unaffected by changes in alveolar gas tensions. The contribution of vasoconstriction or vasodilatation, as a negative feedback system, to the stability of local PAO2 was greatest close to the physiologic range (65-85 mmHg) falloderate efficiency.  相似文献   

7.
Linear programming examines the boundaries of infinite sets. We used this method with the multiple-inert gas-elimination technique to examine the central moments and arterial blood gases of the infinite family of ventilation perfusion (VA/Q) distributions that are compatible with a measured inert gas-retention set. A linear program was applied with Monte-Carlo error simulation to theoretical retention data, and 95% confidence intervals were constructed for the first three moments (mean, dispersion, and skew) and the arterial PO2 and PCO2 of all compatible blood flow distributions. Six typical cases were studied. Results demonstrate narrow confidence intervals for both the lower moments and predicted arterial blood gases of all test cases, which widen as moment number or error increase. We conclude that the blood gas composition and basic structure of all compatible VA/Q distributions are tightly constrained and that even subtle changes in this structure, as may occur experimentally, can be identified.  相似文献   

8.
Ten anesthetized normal dogs were each given two methacholine inhalational challenges to produce large amounts of low ventilation-perfusion (VA/Q) regions but little shunt. After one challenge, high-frequency ventilation (HFV) was applied, whereas after the other conventional mechanical ventilation (MV) was used, the order being randomized. Levels of both ventilatory modes were selected prior to challenge so as to result in similar and normal mean airway pressures and arterial PCO2 levels during control conditions. Gas exchange was assessed by both respiratory and multiple inert-gas transfer. Comparing the effect of HFV and MV, no statistically significant differences were found for lung resistance, pulmonary hemodynamic indices, arterial and mixed venous PO2, expired-arterial PO2 differences, or inert-gas data expressed as retention-excretion differences. The only variables that were different were mean airway pressure (2 cm higher during HFV, P less than 0.04) and arterial PCO2 (10 Torr higher during HFV, P less than 0.002). These results suggest that in this canine model of lung disease characterized by large amounts of low VA/Q regions, HFV is no more effective in delivering fresh gas to such regions than is MV.  相似文献   

9.
The arterial blood PO(2) is increased in the prone position in animals and humans because of an improvement in ventilation (VA) and perfusion (Q) matching. However, the mechanism of improved VA/Q is unknown. This experiment measured regional VA/Q heterogeneity and the correlation between VA and Q in supine and prone positions in pigs. Eight ketamine-diazepam-anesthetized, mechanically ventilated pigs were studied in supine and prone positions in random order. Regional VA and Q were measured using fluorescent-labeled aerosols and radioactive-labeled microspheres, respectively. The lungs were dried at total lung capacity and cubed into 603-967 small ( approximately 1.7-cm(3)) pieces. In the prone position the homogeneity of the ventilation distribution increased (P = 0.030) and the correlation between VA and Q increased (correlation coefficient = 0.72 +/- 0.08 and 0.82 +/- 0.06 in supine and prone positions, respectively, P = 0.03). The homogeneity of the VA/Q distribution increased in the prone position (P = 0.028). We conclude that the improvement in VA/Q matching in the prone position is secondary to increased homogeneity of the VA distribution and increased correlation of regional VA and Q.  相似文献   

10.
We examined the effects of different-sized glass-bead embolization on pulmonary hemodynamics and gas exchange in 12 intact anesthetized dogs. Pulmonary hemodynamics were evaluated by multipoint pulmonary arterial pressure (Ppa)/cardiac output (Q) plots before and 60 min after sufficient amounts of 100-microns (n = 6 dogs) or 1,000-microns (n = 6 dogs) glass beads to triple baseline Ppa were given and again 20 min after 5 mg/kg hydralazine in all the animals. Gas exchange was assessed using the multiple inert gas elimination technique in each of these experimental conditions. Embolization increased both the extrapolated pressure intercepts (by 6 mmHg) and the slopes (by 5 mmHg.l-1.min.m2) of the linear Ppa/Q plots, together with an 80% angiographic pulmonary vascular obstruction. These changes were not significantly different in the two subgroups of dogs. However, arterial PO2 was most decreased after the 100-microns beads, and arterial PCO2 was most increased after the 1,000-microns beads. Both bead sizes deteriorated the distribution of ventilation (VA)/perfusion (Q) ratios, with development of lung units with higher as well as with lower than normal VA/Q. Only 100-microns beads generated a shunt. Only 1,000-microns beads generated a high VA/Q mode and increased inert gas dead space. Hydralazine increased the shunt and decreased the slope of the Ppa/Q plots after 100-microns beads and had no effect after 1,000-microns beads. We conclude that in embolic pulmonary hypertension, Ppa/Q characteristics are unaffected by embolus size up to 1,000 microns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In a recent study by Tsukimoto et al. (J. Appl. Physiol. 68: 2488-2493, 1990), CO2 inhalation appeared to reduce the size of the high ventilation-perfusion ratio (VA/Q) mode commonly observed in anesthetized mechanically air-ventilated dogs. In that study, large tidal volumes (VT) were used during CO2 inhalation to preserve normocapnia. To separate the influences of CO2 and high VT on the VA/Q distribution in the present study, we examined the effect of inspired CO2 on the high VA/Q mode using eight mechanically ventilated dogs (4 given CO2, 4 controls). The VA/Q distribution was measured first with normal VT and then with increased VT. In the CO2 group at high VT, data were collected before, during, and after CO2 inhalation. With normal VT, there was no difference in the size of the high VA/Q mode between groups [10.5 +/- 3.5% (SE) of ventilation in the CO2 group, 11.8 +/- 5.2% in the control group]. Unexpectedly, the size of the high VA/Q mode decreased similarly in both groups over time, independently of the inspired PCO2, at a rate similar to the fall in cardiac output over time. The reduction in the high VA/Q mode together with a simultaneous increase in alveolar dead space (estimated by the difference between inert gas dead space and Fowler dead space) suggests that poorly perfused high VA/Q areas became unperfused over time. A possible mechanism is that elevated alveolar pressure and decreased cardiac output eliminate blood flow from corner vessels in nondependent high VA/Q regions.  相似文献   

12.
Previous work by Lehnert et al. (J. Appl. Physiol. 53:483-489, 1982) has demonstrated that adequate alveolar ventilation can be maintained during apnea in anesthetized dogs by delivering a continuous stream of inspired ventilation through cannulas aimed down the main-stem bronchi. Because an asymmetric distribution of ventilation might introduce ventilation-perfusion (VA/Q) inequality, we compared gas exchange efficiency in nine anesthetized and paralyzed dogs during constant-flow ventilation (CFV) and conventional ventilation (intermittent positive-pressure ventilation, IPPV). Gas exchange was assessed using the multiple inert gas elimination technique. During CFV at 3 l X kg-1 X min-1, lung volume, retention-excretion differences (R-E*) for low- and medium-solubility gases, and the log standard deviation of blood flow (log SD Q) increased, compared with the findings during IPPV. Reducing CFV flow rate to 1 l X kg-1 X min-1 at constant lung volume improved R-E* and log SD Q, but significant VA/Q inequality compared with that at IPPV remained and arterial PCO2 rose. Comparison of IPPV and CFV at the same mean lung volume showed a similar reversible deterioration in gas exchange efficiency during CFV. We conclude that CFV causes significant VA/Q inequality which may be due to nonuniform ventilation distribution and a redistribution of pulmonary blood flow.  相似文献   

13.
We have recently described a new method for measuring distributions of ventilation-perfusion ratios (VA/Q) based on inert gas elimination. Here we report the initial application of the method in normal dogs and in dogs with pulmonary embolism, pulmonary edema, and pneumonia. Characteristic distributions appropriate to the known effects of each lesion were observed. Comparison with traditional indices of gas exchange revealed that the arterial PO2 calculated from the distributions agreed well with measured values, as did the shunts indicated by the method and by the arterial PO2 while breathing 100 per cent 02. Also the Bohr dead space closely matched the dispersion of ventilation in realtion to VA/Q. Assumptions made in the method were critically evaluated and appear justified. These include the existence of a steady state of gas exchange, an alveolar-end-capillary diffusion equilibration, and the fact that all of the observered VA/Q inequality occurs between gas exchange units in parallel. However, theoretical analysis suggests that the method can detect failure of diffusion equilbration across the blood-gas barrier should it exist. These results suggest that the method is well-suited to clinical investigation of patients with pulmonary disease.  相似文献   

14.
gamma-Aminobutyric acid (GABA) content of the brain increases during hypoxia and hypercapnia and GABA by itself is a central ventilatory depressant and may depress metabolism as well. Therefore the effect of centrally administered GABA by ventriculocisternal perfusion on O2 consumption (VO2) and CO2 production (VCO2) was studied in pentobarbital-anesthetized dogs. GABA (30 mM) in mock cerebrospinal fluid (CSF) was perfused for 15 min at the rate of 1.0 ml/min followed by perfusion with mock CSF alone. Body temperature, perfusion pressure, and CSF pH were kept constant. Minute ventilation (VE) was kept constant mechanically. Under these conditions, VO2, VCO2, alveolar ventilation (VA), and relative pulmonary dead space volume (VD/VT) were measured. During perfusion with 30 mM GABA, mean VO2 (+/- SE) decreased from 96.5 +/- 3.3 to 81.9 +/- 5.1 ml/min, VCO2 from 72.1 +/- 3.8 to 60.7 +/- 3.0 ml/min, and VA from 1.7 +/- 0.1 to 1.3 +/- 0.1 l/min. VD/VT increased from 0.55 +/- 0.02 to 0.65 +/- 0.01. Perfusion with mock CSF alone restored these parameters to initial levels within 15 min. We conclude that centrally administered GABA depresses VO2 and VCO2. This reduction in metabolic function is independent of the central modulatory effects of GABA on respiration.  相似文献   

15.
Analysis of momentum transfer between inflow jets and resident gas during constant-flow ventilation (CFV) predicts inhomogeneity of alveolar pressures (PA) and volume, which might account for specific ventilation-variance in the lung. Using alveolar needles to measure pressures (PA) during CFV in eight anesthetized dogs with wide thoracotomy, we observed random dispersion of PA among lobes of up to 12.5 cmH2O. Within each lobe, the PA dispersion was up to 10 cmH2O at CFV of 90 l/min; when flow decreased, PA at all sites decreased, as did the intralobar dispersion. These pressure differences were not observed during conventional mechanical ventilation (CMV). During CFV with room air, dogs were hypoxemic [arterial PO2 (Pao2) 54 +/- 15 Torr] and the venous admixture (Qva/QT) was 50 +/- 15%. When inspiratory O2 fraction was increased to 0.4, Pao2 increased to 172 +/- 35 Torr and Qva/QT dropped to 13.5 +/- 8.4%, confirming considerable ventilation-perfusion (VA/Q) variance not observed during CMV. We conclude that momentum transfer between the inflow stream and resident gas caused inhomogeneities of alveolar pressures, volumes, and ventilation responsible for VA/Q variance and hypoxemia during CFV. Conceivably, the abnormal ventilation distribution is minimized by collateral ventilation and forces of interdependence between regions of high and low alveolar pressures. Momentum transfer also predicted the mucosal damage observed on histological evaluation of the bronchial walls near the site of inflow jet impact.  相似文献   

16.
Carotid body-denervated (CBD) ponies have a less than normal increase in arterial PCO2 (PaCO2) when inspired CO2 (PICO2) is increased, even when pulmonary ventilation (VE) and breathing frequency (f) are normal. We studied six tracheostomized ponies to determine whether this change 1) might be due to increased alveolar ventilation (VA) secondary to a reduction in upper airway dead space (VD) or 2) is dependent on an upper airway sensory mechanism. Three normal and three chronic CBD ponies were studied while they were breathing room air and at 14, 28, and 42 Torr PICO2. While the ponies were breathing room air, physiological VD was 483 and 255 ml during nares breathing (NBr) and tracheostomy breathing (TBr), respectively. However, at elevated PICO2, mixed expired PCO2 often exceeded PaCO2; thus we were unable to calculate physiological VD using the Bohr equation. At all PICO2 in normal ponies, PaCO2 was approximately 0.3 Torr greater during NBr than during TBr (P less than 0.05). In CBD ponies this NBr-TBr difference was only evident while breathing room air and at 28 Torr PICO2. At each elevated PICO2 during both NBr and TBr, the increase in PaCO2 above control was always less in CBD ponies than in normal ponies (P less than 0.01). The VE-PaCO2, f-PaCO2, and tidal volume-PaCO2 relationships did not differ between NBr and TBr (P greater than 0.10) nor did they differ between normal and CBD ponies (P greater than 0.10). We conclude that the attenuated increase in PaCO2 during CO2 inhalation after CBD is not due to a relative increase in VA secondary to reducing upper airway VD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Pulmonary gas exchange in Andean natives (n = 8) with excessive high-altitude (3,600-4,200 m) polycythemia (hematocrit 65.1 +/- 6.6%) and hypoxemia (arterial PO2 45.6 +/- 5.6 Torr) in the absence of pulmonary or cardiovascular disease was investigated both before and after isovolemic hemodilution by use of the inert gas elimination technique. The investigations were carried out in La Paz, Bolivia (3,650 m, 500 mmHg barometric pressure). Before hemodilution, a low ventilation-perfusion (VA/Q) mode (VA/Q less than 0.1) without true shunt accounted for 11.6 +/- 5.5% of the total blood flow and was mainly responsible for the hypoxemia. The hypoventilation with a low mixed venous PO2 value may have contributed to the observed hypoxemia in the absence of an impairment in alveolar capillary diffusion. After hemodilution, cardiac output and ventilation increased from 5.5 +/- 1.2 to 6.9 +/- 1.2 l/min and from 8.5 +/- 1.4 to 9.6 +/- 1.3 l/min, respectively, although arterial and venous PO2 remained constant. VA/Q mismatching fell slightly but significantly. The hypoxemia observed in subjects suffering from high-altitude excessive polycythemia was attributed to an increased in blood flow perfusing poorly ventilated areas, but without true intra- or extrapulmonary shunt. Hypoventilation as well as a low mixed venous PO2 value may also have contributed to the observed hypoxemia.  相似文献   

18.
We aimed to assess the influence of lateral decubitus postures and positive end-expiratory pressure (PEEP) on the regional distribution of ventilation and perfusion. We measured regional ventilation (VA) and regional blood flow (Q) in six anesthetized, mechanically ventilated dogs in the left (LLD) and right lateral decubitus (RLD) postures with and without 10 cmH(2)O PEEP. Q was measured by use of intravenously injected 15-microm fluorescent microspheres, and VA was measured by aerosolized 1-microm fluorescent microspheres. Fluorescence was analyzed in lung pieces approximately 1.7 cm(3) in volume. Multiple linear regression analysis was used to evaluate three-dimensional spatial gradients of Q, VA, the ratio VA/Q, and regional PO(2) (Pr(O(2))) in both lungs. In the LLD posture, a gravity-dependent vertical gradient in Q was observed in both lungs in conjunction with a reduced blood flow and Pr(O(2)) to the dependent left lung. Change from the LLD to the RLD or 10 cmH(2)O PEEP increased local VA/Q and Pr(O(2)) in the left lung and minimized any role of hypoxia. The greatest reduction in individual lung volume occurred to the left lung in the LLD posture. We conclude that lung distortion caused by the weight of the heart and abdomen is greater in the LLD posture and influences both Q and VA, and ultimately gas exchange. In this respect, the smaller left lung was the most susceptible to impaired gas exchange in the LLD posture.  相似文献   

19.
In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025-1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.  相似文献   

20.
We determined the effects of carotid body excision (CBX) on eupneic ventilation and the ventilatory responses to acute hypoxia, hyperoxia, and chronic hypoxia in unanesthetized rats. Arterial PCO2 (PaCO2) and calculated minute alveolar ventilation to minute metabolic CO2 production (VA/VCO2) ratio were used to determine the ventilatory responses. The effects of CBX and sham operation were compared with intact controls (PaCO2 = 40.0 +/- 0.1 Torr, mean +/- 95% confidence limits, and VA/VCO2 = 21.6 +/- 0.1). CBX rats showed 1) chronic hypoventilation with respiratory acidosis, which was maintained for at least 75 days after surgery (PaCO2 = 48.4 +/- 1.1 Torr and VA/VCO2 = 17.9 +/- 0.4), 2) hyperventilation in response to acute hyperoxia vs. hypoventilation in intact rats, 3) an attenuated increase in VA/VCO2 in acute hypoxemia (arterial PO2 approximately equal to 49 Torr), which was 31% of the 8.7 +/- 0.3 increase in VA/VCO2 observed in control rats, 4) no ventilatory acclimatization between 1 and 24 h hypoxia, whereas intact rats had a further 7.5 +/- 1.5 increase in VA/VCO2, 5) a decreased PaCO2 upon acute restoration of normoxia after 24 h hypoxia in contrast to an increased PaCO2 in controls. We conclude that in rats carotid body chemoreceptors are essential to maintain normal eupneic ventilation and to the process of ventilatory acclimatization to chronic hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号