首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.  相似文献   

2.
The genes of the major histocompatibility complex (MHC) are a central component of the immune system in vertebrates and have become important markers of functional, fitness-related genetic variation. We have investigated the evolutionary processes that generate diversity at MHC class I genes in a large population of an archaic reptile species, the tuatara (Sphenodon punctatus), found on Stephens Island, Cook Strait, New Zealand. We identified at least 2 highly polymorphic (UA type) loci and one locus (UZ) exhibiting low polymorphism. The UZ locus is characterized by low nucleotide diversity and weak balancing selection and may be either a nonclassical class I gene or a pseudogene. In contrast, the UA-type alleles have high nucleotide diversity and show evidence of balancing selection at putative peptide-binding sites. Twenty-one different UA-type genotypes were identified among 26 individuals, suggesting that the Stephens Island population has high levels of MHC class I variation. UA-type allelic diversity is generated by a mixture of point mutation and gene conversion. As has been found in birds and fish, gene conversion obscures the genealogical relationships among alleles and prevents the assignment of alleles to loci. Our results suggest that the molecular mechanisms that underpin MHC evolution in nonmammals make locus-specific amplification impossible in some species.  相似文献   

3.
Xu TJ  Sun YN  Wang RX 《Marine Genomics》2010,3(2):117-123
Allelic polymorphism and evolution mechanism of major histocompatibility complex (MHC) genes has been investigated in many mammals, however, much less is known in teleost. In order to investigate the mechanisms creating and maintaining variability at the MHC class II DAA locus, we examined the polymorphism, gene duplication and balancing selection of MHC class II DAA gene of the half-smooth tongue sole (Cynoglossus semilaevis). We described 33 alleles in the C. semilaevis, recombination and gene duplication seems to play more important roles in the origin of new alleles. The rate of non-synonymous substitutions (d(N)) occurred at a significantly higher frequency than that of synonymous substitutions (d(S)) in peptide-binding region (PBR) and non-PBR, suggesting balancing selection for maintaining polymorphisms at the MHC II DAA locus. Many positive selection sites were found to act very intensively on antigen-binding sites. Our founding suggests a snapshot in an evolutionary process of MHC-DAA gene evolution of the C. semilaevis.  相似文献   

4.
Most Pacific salmonid populations have faced significant population declines over the past 30 years. In order to effectively conserve and manage these populations, knowledge of the evolutionary adaptive state of individuals and the scale of adaptation across populations is needed. The vertebrate major histocompatibility complex (MHC) represents an important adaptation to parasites, and genes encoding for the MHC are widely held to be undergoing balancing selection. However, the generality of balancing selection across populations at MHC loci is not well documented. Using Chinook salmon (Oncorhynchus tshawytscha) from two populations, we follow the survival of full-sib family replicates reared in their natal river and reciprocally transplanted to a foreign river to examine selection and local adaptation at the MHC class I and II loci. In both populations, we found evidence of a survivorship advantage associated with nucleotide diversity at the MHC class I locus. In contrast, we found evidence that MHC class II diversity was disadvantageous in one population. There was no evidence that these effects occurred in translocated families, suggesting some degree of local adaptation at the MHC loci. Thus, our results implicate balancing selection at the MHC class I but potentially differing selection across populations at the class II locus.  相似文献   

5.
Major histocompatibility complex (MHC) genes play an important role in the immune response of vertebrates. Allelic polymorphism and evolutionary mechanism of MHC genes have been investigated in many mammals, but much less is known in teleosts. We examined the polymorphism, gene duplication and balancing selection of the MHC class II DAB gene of the half-smooth tongue sole (Cynoglossus semilaevis); 23 alleles were found in this species. Gene duplication manifested as three to six distinct sequences at each domain in the same individuals. Non-synonymous substitutions occurred at a significantly higher frequency than synonymous substitutions in the PBR domain, suggesting balancing selection for maintaining polymorphisms at the MHC II DAB locus. Many positive selection sites were found to act very intensely on antigen-binding sites of MHC class II DAB gene.  相似文献   

6.
We have conducted an extensive phylogenetic analysis of polymorphic alleles from human and mouse major histocompatibility complex (MHC) class I and class II genes. The phylogenetic tree obtained for 212 complete human class I allele sequences (HLA-A, -B, and -C) has shown that all alleles from the same locus form a single cluster, which is highly supported by bootstrap values, except for one HLA-B allele (HLA-B*7301). Mouse MHC class I loci did not show locus-specific clusters of polymorphic alleles. This was considered to be because of either interlocus genetic exchange or the confusing designation of loci in different haplotypes at the present time. The locus specificity of polymorphic alleles was also observed in human and mouse MHC class II loci. It was therefore concluded that interlocus recombination or gene conversion is not very important for generating MHC diversity, with a possible exception of mouse class I loci. According to the phylogenetic trees of complete coding sequences, we classified human MHC class I (HLA-A, -B, and -C) and class II (DRB1) alleles into three to five major allelic lineages (groups), which were monophyletic with high bootstrap values. Most of these allelic groups remained unchanged even in phylogenetic trees based on individual exons, though this does not exclude the possibility of intralocus recombination involving short DNA segments. These results, together with the previous observation that MHC loci are subject to frequent duplication and deletion, as well as to balancing selection, indicate that MHC evolution in mammals is in agreement with the birth-and-death model of evolution, rather than with the model of concerted evolution.  相似文献   

7.
Xu S  Sun P  Zhou K  Yang G 《Immunogenetics》2007,59(7):581-592
Major histocompatibility complex (MHC) class II DQB and DRA genes and class I gene of finless porpoises (Neophocaena phocaenoides) were investigated by single-strand conformation polymorphism and sequence analysis. The DRA, DQB, and MHC-I loci each contained 5, 14, and 34 unique sequences, respectively, and considerable sequence variation was found at the MHC-I and DQB loci. Gene duplication was manifested as three to five distinct sequences at each of the DQB and MHC-I loci from some individuals, and these sequences at each of the two loci separately clustered into four groups (cluster A, B, C, and D) based on the phylogenetic trees. Phylogenetic reconstruction revealed a trans-species pattern of evolution. Relatively high rates of non-synonymous (dN) vs synonymous (dS) substitution in the peptide-binding region (PBR) suggested balancing selection for maintaining polymorphisms at the MHC-I and DQB loci. In contrast, one single locus with little sequence variation was detected in the DRA gene, and no non-synonymous substitutions in the PBR indicated no balancing selection on this gene.  相似文献   

8.
Xu TJ  Sun YN  Chen SL 《Genetica》2010,138(11-12):1251-1259
Major histocompatibility complex (MHC) genes play an important role in the immune response of vertebrates. Allelic polymorphism and pattern of evolution in MHC genes has been investigated in many mammals, however, much less is known in teleost. In the present study, we have investigated complete MHC Iα gene consists of 7 exons and 6 introns in Olive flounder (Paralichthys olivaceus). Genetic variation in the MHC class Iα gene was also tested in flounder. In 32 individuals, a total of 62 alleles were detected from exon 2 of MHC class Iα gene. The rate of non-synonymous substitutions (d ( N )) occurred at a significantly higher frequency than that of synonymous substitutions (d ( S )) in PBR and non-PBR, suggesting that balancing selection for maintaining polymorphisms at the MHC Iα locus. Many positive selection sites were found to act very intensively on antigen binding sites. Our founding suggests a snapshot in an evolutionary process of MHC Iα gene evolution of the P. olivaceus.  相似文献   

9.
We previously sequenced two regions around the centromeric end of HLA class I and the boundary between class I and class III. In this paper we analyze the two regions of about 385 kb and confirm, giving a new line of evidence, that the following two pairs of the genomic segments were duplicated in evolution: (i) a 43-kb genomic segment including the HLA-B gene showing the highest polymorphism among the classical HLA class I loci (class Ia) and a 40-kb segment including the HLA-C locus showing the lowest polymorphism and (ii) a 52-kb segment including the MIC (MHC class I chain related gene) B and a 35-kb segment including MICA. We also found that repetitive elements such as SINEs, LINEs, and LTRs occupy as much as 47% of nucleotides in this 385-kb region. This unusually high content of repetitive elements indicates that repeat-mediated rearrangements have frequently occurred in the evolutionary history of the HLA class Ia region. Analysis of LINE compositions within the two pairs of duplicated segments revealed that (i) LINEs in these regions had been dispersed prior to both the duplication of the HLA-B and -C loci and the duplication of the MICB and MICA loci, and (ii) the divergence of the HLA-B and -C loci occurred prior to the duplication of the MICA and MICB loci. To find novel genes responsible for HLA class I-associated or other diseases, we performed computer analysis applying GenScan and GRAIL to GenBank's dbEST. As a result, at least five as yet uncharacterized genes were newly mapped on the HLA class I centromeric region studied. These novel genes should be analyzed further to determine their relationships to diseases associated with this region. Received: 16 June 1998 / Accepted: 18 August 1998  相似文献   

10.
11.
Enhanced selection for MHC diversity in social tuco-tucos   总被引:2,自引:0,他引:2  
To explore the effects of behavior and demography on balancing selection at major histocompatibility complex (MHC) loci, we examined allelic diversity at exon 2 of the MHC class II DQbeta locus in a social and a solitary species of tuco-tuco (Rodentia: Ctenomyidae: Ctenomys), both of which occur in the same valley in southwestern Argentina. By comparing patterns of diversity at this MHC gene to the diversity evident at fifteen microsatellite loci, we demonstrate that balancing selection at the DQbeta locus is enhanced in the social species compared to its solitary congener. These findings have intriguing implications for the role of behavioral and demographic parameters in maintaining diversity at MHC loci.  相似文献   

12.
A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection.  相似文献   

13.
14.
Characterization of a divergent non-classical MHC class I gene in sharks   总被引:1,自引:0,他引:1  
Sharks are the most ancient group of vertebrates known to possess members of the major histocompatibility complex (MHC) gene family. For this reason, sharks provide a unique opportunity to gain insight into the evolution of the vertebrate immune system through comparative analysis. Two genes encoding proteins related to the MHC class I gene family were isolated from splenic cDNA derived from spiny dogfish shark ( Squalus acanthias). The genes have been designated MhcSqac-UAA*01 and MhcSqac-UAA*NC1. Comparative analysis demonstrates that the Sqac-UAA*01 protein sequence clusters with classical MHC class I of several shark species and has structural elements common to most classical MHC class I molecules. In contrast, Sqac-UAA*NC1 is highly divergent from all vertebrate classical MHC class I proteins, including the Sqac-UAA *01 sequence and those of other shark species. Although Sqac-UAA*NC1 is clearly related to the MHC class I gene family, no orthologous genes from other species were identified due to the high degree of sequence divergence. In fact, the Sqac NC1 protein sequence is the most divergent MHC class-I-like protein identified thus far in any shark species. This high degree of divergence is similar in magnitude to some of the MHC class-I-related genes found in mammals, such as MICA or CD1. These data support the existence of a class of highly divergent non-classical MHC class I genes in the most primitive vertebrates known to possess homologues of the MHC and other components of the adaptive immune system.  相似文献   

15.
Axtner J  Sommer S 《Immunogenetics》2007,59(5):417-426
The generation and maintenance of allelic polymorphism in genes of the major histocompatibility complex (MHC) is a central issue in evolutionary genetics. Recently, the focus has changed from ex situ to in situ populations to understand the mechanisms that determine adaptive MHC polymorphism under natural selection. Birth-and-death evolution and gene conversion events are considered to generate sequence diversity in MHC genes, which subsequently is maintained by balancing selection through parasites. The ongoing arms race between the host and parasites leads to an adaptive selection pressure upon the MHC, evident in high rates of non-synonymous vs synonymous substitution rates. We characterised the MHC class II DRB exon 2 of free living bank voles, Clethrionomys glareolus by single-strand conformation polymorphism and direct sequencing. Unlike other arvicolid species, the DRB locus of the bank vole is at least quadruplicated. No evidence for gene conversion events in the Clgl-DRB sequences was observed. We found not only high allelic polymorphism with 26 alleles in 36 individuals but also high rates of silent polymorphism. Exceptional for MHC class II genes is a purifying selection pressure upon the majority of MHC-DRB sequences. Further, we analysed the association between certain DRB alleles and the parasite burden with gastrointestinal trichostrongyle nematodes Heligmosomum mixtum and Heligmosomoides glareoli and found significant quality differences between specific alleles with respect to infection intensity. Our findings suggest a snapshot in an evolutionary process of ongoing birth-and-death evolution. One allele cluster has lost its function and is already silenced, another is loosing its adaptive value in terms of gastrointestinal nematode resistance, while a third group of alleles indicates all signs of classical functional MHC alleles.  相似文献   

16.
The extreme polymorphism of antigen‐presenting genes of the major histocompatibility complex (MHC) has spurred intense research unparalleled for any other gene family. This applies also to teleosts where sequence information is available for 3559 MHC class I and class II allelic variants from 137 species. This review summarizes current knowledge on the origin and maintenance of diversity at classical MHC loci. Most studies identified positive selection (i.e. elevated rates of non‐synonymous over synonymous substitutions, dN/dS) as a sign of balancing selection. A meta‐analysis on nine species with sufficient numbers of class I and class II sequences revealed that recombination rate and intensity of positive selection were positively correlated, suggesting that recombination and gene conversion played a significant role in shaping the allelic repertoire. Processes that create diversity over long timescales need to be complemented by contemporary balancing selection, either through overdominance or frequency‐dependent selection, in order to explain the high allelic diversity observed today. While some evidence for overdominance exists for a few taxa (mainly salmonids) by correlating parasite infection data or survival to MHC genotypes, field or experimental data on negative frequency‐dependent selection are lacking altogether, even though some fish species are particularly suitable as model systems. Theoretical predictions suggest that negative frequency‐dependent selection is necessary to maintain the existing polymorphism. Hence, future empirical studies should focus on detecting signals that differentiate between mechanisms of contemporary selection rather than repeatedly showing historical selection events.  相似文献   

17.
Evidence of selection acting on major histocompatibility complex (MHC) genes has been illustrated with the analysis of their nucleotide sequences and allele frequency distribution. Comparing the patterns of population differentiation at neutral markers and MHC genes in the wild may provide further insights about the relative role of selection and neutrality in shaping their diversity. In this study, we combine both methods to assess the role of selection on a MHC gene in Atlantic salmon. We compare variation at a MHC class II B locus and microsatellites among 14 samples from seven different rivers and seven subpopulations within a single river system covering a variety of habitats and different geographical scales. We show that diversifying selection is acting on the sites involved in antigen presentation and that balancing selection maintains a high level of polymorphism within populations. Despite important differences in habitat type, the comparison of the population structure at MHC and microsatellites on large geographical scales reveals a correlation between patterns of differentiation, indicating that drift and migration have been more important than selection in shaping population differentiation at the MHC locus. In contrast, strong discrepancies between patterns of population differentiation at the two types of markers provides support for the role of selection in shaping population structure within rivers. Together, these results confirm that natural selection is influencing MHC gene diversity in wild Atlantic salmon although neutral forces may also be important in their evolution.  相似文献   

18.
The role and intensity of positive selection maintaining the polymorphism of major histocompatibility complex (MHC) class I genes in the three-spined stickleback Gasterosteus aculeatus was investigated. The highly polymorphic set of MHC class I genes found was organized in a single linkage group. Between 5 and 14 sequence variants per individual were identified by single-stranded conformation polymorphism (SSCP) analysis. Segregation analysis studied in 10 three-spined stickleback families followed the expected pattern of Mendelian inheritance. The gamete fusion in three-spined stickleback thus seems to be random with respect to the MHC class I genes. The DNA sequence analyses showed that the expressed MHC class I loci are under strong selection pressure, possibly mediated by parasites. Codons that were revealed to be under positive selection are potentially important in antigen binding. MHC class I sequences did not form significant supported clusters within a phylogenetic tree. Analogous to MHC class II genes, it was not possible to assign the class I sequences to a specific locus, suggesting that the class I genes may have been generated by recent gene duplication.  相似文献   

19.
20.
The confounding effects of population structure complicate efforts to identify regions of the genome under the influence of selection in natural populations. Here we test for evidence of selection in three genes involved in vertebrate immune function - the major histocompatibility complex (MHC), interferon gamma (IFNG) and natural resistance associated macrophage polymorphism (NRAMP) - in highly structured populations of wild thinhorn sheep (Ovis dalli). We examined patterns of variation at microsatellite loci linked to these gene regions and at the DNA sequence level. Simple Watterson's tests indicated balancing selection at all three gene regions. However, evidence for selection was confounded by population structure, as the Watterson's test statistics from linked markers were not outside of the range of values from unlinked and presumably neutral microsatellites. The translated coding sequences of thinhorn IFNG and NRAMP are fixed and identical to those of domestic sheep (Ovis aries). In contrast, the thinhorn MHC DRB locus shows significant evidence of overdominance through both an excess of nonsynonymous substitution and trans-species polymorphism. The failure to detect balancing selection at microsatellite loci linked to the MHC is likely the result of recombination between the markers and expressed gene regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号