首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The juxtaglomerular apparatus, a neuroendocrine unit located in the vascular pole of the glomerulus and influencing blood pressure by the secretion of renin, is known to have a rich supply of monoaminergic nerve fibres. Neuropeptide Tyrosine (NPY), a newly discovered, potent, vasoconstrictor peptide of 36 amino acids, has been found by immunocytochemistry to be present in a dense plexus of fibres around the juxtaglomerular apparatus of man, monkey, mouse, hamster, rat and guinea pig. NPY-immunoreactivity was markedly depleted after chemical sympathectomy by 6-hydroxydopamine. The concentration of NPY within the whole mouse kidney was 29.6 +/- 6.8 pmol/g and fractionation of the extracts demonstrated that the NPY-like immunoreactivity co-eluted from the column in the same position as the porcine NPY standard. The role of this peptide in renal physiology and pathology now needs urgent investigation.  相似文献   

2.
Summary The distribution and concentrations of neuropeptide Y (NPY) in kidneys, renal arteries, heart, aorta, mesenteric artery and adrenal glands from aorta-ligated hypertensive rats were studied by immunocytochemistry and radioimmunoassay. Immunocytochemistry showed that in the hypertensive animals NPY-immunoreactive fibres were decreased in both kidney and renal artery, above and below the ligation, and in mesenteric arteries. The depletion of NPY-containing nerves in the kidney was more pronounced around the juxtaglomerular apparatus than in other areas of the organ. By radioimmunoassay, the concentrations of NPY immunoreactivity were significantly lower in the hypertensive animals when compared with the controls, (kidney: hypertensive 1.0±0.1; controls 2.0±0.2 pmol/g, mean±SEM; p<0.05 renal artery: hypertensive 5.0±0.8; controls 12.1±2.0; p<0.05 and mesenteric artery: hypertensive 8.6±1.9; 17.6±3.0; p<0.01). While there were no statistically significant changes in the levels of NPY immunoreactivity in the other areas studied, there was a general trend for the level to fall in the renal artery below the ligation (hypertensive 10.6±1.5; control 15.3±2.4; p>0.05). It is of interest that changes were observed in the vasoconstrictor peptide NPY in this commonly used model of hypertension.  相似文献   

3.
Summary Immunohistochemistry was used to localize regulatory peptides in endocrine cells and nerve fibres in the pancreas of two species of elasmobranchs (starry ray,Raja radiata and spiny dogfish,Squalus acanthias), and in the Brockmann bodies of four teleost species (goldfish,Carassius auratus, brown troutSalmo trutta, rainbow trout,Oncorhynchus mykiss and cod,Gadus morhua). In the elasmobranchs, the classical pancreatic hormones somatostatin, glucagon and insulin were present in endocrine cells of the islets. In addition, endocrine cells were labelled with antisera to enkephalins, FMRF-amide, gastrin/cholecystokinin-(CCK)/caerulein, neurotensin, neuropeptide Y (NPY), and peptide YY (PYY). Nerve fibres were demonstrated with antisera against bombesin, galanin and vasoactive intestinal polypeptide (VIP). These nerve fibres innervated the walls of blood vessels, in the exocrine as well as the endocrine tissue. In the four teleost species immunoreactivity to somatostatin, insulin and glucagon was intense in the Brockmann bodies. Cells were labelled with antisera to enkephalin, neurotensin, FMRFamide, gastrin/CCK/ caerulein, NPY, PYY and VIP. Only a few nerve fibres were found with antisera against dopamine--hydroxylase (DBH, cod), enkephalin (met-enkephalin-Arg-Phe, cod), bombesin (cod), gastrin/CCK/caerulein (cod) and VIP. Galanin-like-immunoreactive fibres were numerous in the Brockmann bodies of all teleosts examined. Immunoreactivity to calcitonin gene-related peptide (CGRP), substance P, tyrosine hydroxylase (TH), and phenyl-N-methyl transferase (PNMT) could not be found in any of the species studied.  相似文献   

4.
Endocrine cells exhibiting immunoreactivity to FMRFamide-like, LPLRFamide-like, neuropeptide Y(NPY)-like and peptide YY(PYY)-like peptides were found in the periphery of the Brockmann bodies of the cod, Gadus morhua, and rainbow trout, Oncorhynchus mykiss. No immunoreactivity or very weak labelling was found with antisera to pancreatic polypeptide (PP). Vasoactive intestinal polypeptide (VIP)-like immunoreactivity was found in nerve fibres, whereas labelling with VIP antiserum in endocrine cells disappeared after preincubation with nonimmune serum. There were always more immunoreactive cells in the rainbow trout than in the cod. No immunoreactivity could be seen with antisera to gastrin/cholecystokinin (CCK) or enkephalin. Double-labelling studies were performed to study the colocalization of the peptides in peripheral endocrine cells. Cells immunoreactive to NPY were also labelled with antisera to FMRFamide, LPLRFamide and PYY. The co-localization pattern of NPY varied; in some Brockmann bodies, a population of the immunoreactive cells showed co-localization and others contained NPY-like immunoreactivity only, whereas in other Brockmann bodies, all NPY-labelled cells also contained FMRFamide-like, LPLRFamide-like and PYY-like immunoreactivity. Cells immunoreactive to PYY similarly contained FMRFamide-like, LPLRFamide-like and NPY-like immunoreactivity, comparable to the patterns observed with NPY. Glucagon-like immunoreactivity was found at the periphery of the Brockmann bodies. A subpopulation of the glucagon-containing cells contained NPY-like immunoreactivity. PYY-like immunoreactivity was also found co-localized with glucagon-like immunoreactivity, as were FMRFamide-like and LPLRFamide-like immunoreactivity. Therefore, either NPY-like and PYY-like immunoreactivity together with FMRFamide-like and LPLRFamide-like immunoreactivity occur in the same endocrine cells of the Brockmann body of the cod and rainbow trout, or a hybrid NPY/PYY-like peptide recognized by both NPY and PYY antisera is present in the Brockmann body.  相似文献   

5.
Summary The presence and distribution of neuropeptides belonging to the pancreatic polypeptide family have been demonstrated by an indirect immunofluorescence technique in the nervous systems of adult male and female Schistosoma mansoni. Seven antisera of differing regional specificity to pancreatic polypeptide (PP), peptide YY (PYY) and neuropeptide Y (NPY) were employed on both whole-mount and cryostat-sectioned material. Positive immunoreactivity (IR) was obtained with all antisera except an N-terminally-directed antiserum to NPY. In the CNS, immunoreactivity was restricted to cell bodies and nerve fibres in the anterior ganglia, central commissure and dorsal and ventral nerve cords of both sexes, whereas, in the PNS, positive-IR was present in the plexuses innervating the subtegumental musculature and the oral and ventral suckers. Intense immunoreactivity was observed in a plexus of nerve fibres and cell bodies in the lining of the gynaecophoric canal and in fine nerve fibres innervating the dorsal tubercles of the male. In contrast, in the female, strong immunoreactivity was evident in nerve plexuses innervating the lining of the ovovitelline duct and in the wall of the ootype, but most notably in a cluster of cells in the region of Mehlis' gland. Results suggest that molecules with C-terminal homology to the PP-family are present in S. mansoni. These peptides would appear to be important regulatory molecules in the parasite's nervous system and may play a role in the control of egg production.  相似文献   

6.
The occurrence and distribution of neuropeptide-containing fibres in the human parotid gland were examined by the peroxidase--antiperoxidase method with attention to the quality of fixation and the condition of patients. Many fibres immunoreactive for neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) and a moderate number of galanin- positive (GAL) fibres were distributed around the acini. A moderate number of NPY and VIP fibres were distributed around the intercalated ducts. The semiquantitative mean densities (_SD) of periacinar NPY, VIP and GAL fibres expressed as a percentage of the total protein gene product (PGP) 9.5 immunoreactive fibres were 75.62 _ 7.25%, 70.52 _ 9.33% and 41.76 _ 5.45%, respectively, whereas those of substance P (SP), calcitonin gene-related peptide (CGRP) and FMRF amide (FMRF) fibres were below 10%. The mean densities of NPY and VIP fibres around the intercalated ducts expressed as the percentage of PGP 9.5 fibres associated with these ducts were 52.37 _ 6.19% and 59.62 _ 7.02% respectively. Those of SP, CGRP, GAL, and FMRF fibres were below 10%. The densities of NPY, VIP, SP, CGRP, GAL and FMRF fibres around the striated and excretory ducts were also below 10%. In the vasculature, NPY fibres were the most prominent. Similarly, the mean density of perivascular NPY fibres was 93.76 _ 2.03%. No somatostatin or leucine or methionine enkephalin immunoreactivity was detected around the acini, duct system or blood vessels. These findings suggest that, in this gland, the periacinar NPY, VIP and GAL fibres may participate in regulating the synthesis of saliva and its secretion and that perivascular peptidergic fibres, especially NPY fibres, may be involved in controlling local blood flow This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
Summary The localisation and distribution of 10 vertebrate-derived neuropeptides in the earthworm, Lumbricus terrestris, have been determined by an indirect immunofluorescence technique. The peptides are pancreatic polypeptide (PP), peptide tyrosine tyrosine (PYY), neuropeptide Y (NPY), glucagon (C-terminal), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), gastrinreleasing peptide (GRP), calcitonin gene-related peptide (CGRP), neurotensin (NT), and met-enkephalin. For 6 of the peptides — PYY, NPY, PHI, glucagon, GRP and CGRP — this is the first demonstration of their presence in any annelid, and NT has not previously been described in an oligochaete. Cell bodies and nerve fibres immunoreactive to the 10 peptides occur throughout the CNS. In the PNS, epidermal sensory cells displayed immunoreactivities to PP and PYY, and PP-, PYY-, NPY-, PHI- and GRP-like immunoreactivities occurred in nerve fibres supplying the main body muscles. Nerve fibres immunoreactive to PP and PYY are also associated with the innervation of the gut (pharynx, oesophageal glands, and mid and posterior regions of the intestine). No endocrine cells immunoreactive for any of the antisera tested could be identified in the gut epithelium, suggesting that dual location of peptides in the brain and gut epithelium is a phenomenon that occurred at a later stage in evolution. No immunoreactive elements were detected in any of the organs and ducts of the reproductive and excretory systems.  相似文献   

8.
Summary Nerve fibres displaying neuropeptide-Y (NPY) immunoreactivity are abundantly distributed in the respiratory tract of cats, guinea-pigs, rats and mice. Fine beaded NPY fibres were seen in whole-mount spreads of the middle-ear mucosa. In the nasal mucosa and in the wall of the Eustachian tube NPY fibres were numerous around arteries and arterioles but sparse in the vicinity of veins; single fibres were found close to the acini of seromucous glands. In the tracheobronchial wall NPY fibres occurred in the proximity of blood vessels, in the subepithelial layer and in the smooth muscle. Surgical and chemical (6-hydroxydopamine treatment) sympathectomy resulted in disappearance of adrenergic and NPY-containing nerve fibres in the nasal mucosa. Sequential staining with antibodies against dopamine--hydroxylase (DBH) and NPY revealed that DBH and NPY occur in the same perivascular nerve fibres in the nasal mucosa. The distribution of NPY fibres in the respiratory tract suggests multiple functions of NPY, such as regulation of local blood flow, glandular secretion and smooth muscle activity.  相似文献   

9.
Vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI) and neuropeptide Y (NPY) are neuropeptides present in all layers of the small intestine. NPY-immunoreactive fibres in the gut seem to derive from two sources. One population is of extramural (sympathetic) origin and contains noradrenaline, another is of intramural origin and does not contain noradrenaline. In the present study of mouse, rat and pig, immunocytochemistry showed immunoreactive PHI to coexist completely with immunoreactive VIP. This was predictable, since VIP and PHI derive from the same precursor. In addition, however, VIP and PHI were found to coexist with immunoreactive NPY in non-adrenergic (but not in adrenergic) nerve fibres and nerve cell bodies. This coexistence was unexpected, since the VIP precursor does not contain NPY-like sequences.  相似文献   

10.
With the use of several region-specific antisera and the peroxidase-antiperoxidase (PAP) technique, several regulatory polypeptides were localized in nerves of the kidney. Neuropeptide Y (NPY)- immunoreactivity (IR), neurotensin (NT)-IR and vasoactive intestinal polypeptide (VIP)-IR occurred at high densities in all segments of the renal arterial system forming a perivascular plexus. Furthermore, NT-IR nerves were particularly frequent at the juxtaglomerular apparatus (JGA). Calcitonin gene-related peptide (CGRP)-IR was mainly concentrated in nerves supplying the hilus arteries and the JGA. Substance P (SP)-IR was predominantly found in large varicosities close to large renal arterial vessels and in the vicinity of the JGA. Somatostatin (SOM)-IR was only observed in single varicosities located at the media-adventitia border of large renal hilus arteries. The peptidergic nerves are correlated to their ultrastructural counterpart. In addition, the distribution patterns and the frequency of the different types of renal peptidergic nerve fibres are evaluated and compared. The functional role of these neuropeptides and their origin within the efferent branch of this part of the peripheral autonomic nervous system is discussed. Furthermore, the implication of some of the neuropeptides studied in afferent renal innervation is also substantiated.  相似文献   

11.
Studies of 23 untreated adult mouse kidneys revealed that in mouse kidney sections the frequency of juxtaglomerular granulated cells as compared to the glomeruli is 38.5 +/- 1.79%, the value for the JGI, 71.8 +/- 3.93. Following 100 glomeruli through complete serial sections prepared from a single mouse kidney, it was shown that in the cortex of the mouse kidney all juxtaglomerular apparatus related to the glomeruli contain renin-producing modified smooth muscle cells with granulated cytoplasm.  相似文献   

12.
Summary With the use of several region-specific antisera and the peroxidase-antiperoxidase (PAP) technique, several regulatory polypeptides were localized in nerves of the kidney. Neuropeptide Y (NPY)- immunoreactivity (IR), neurotensin (NT)-IR and vasoactive intestinal polypeptide (VIP)-IR occurred at high densities in all segments of the renal arterial system forming a perivascular plexus. Furthermore, NT-IR nerves were particularly frequent at the juxtaglomerular apparatus (JGA). Calcitonin gene-related peptide (CGRP)-IR was mainly concentrated in nerves supplying the hilus arteries and the JGA. Substance P (SP)-IR was predominantly found in large varicosities close to large renal arterial vessels and in the vicinity of the JGA. Somatostatin (SOM)-IR was only observed in single varicosities located at the media-adventitia border of large renal hilus arteries. The peptidergic nerves are correlated to their ultrastructural counterpart. In addition, the distribution patterns and the frequency of the different types of renal peptidergic nerve fibres are evaluated and compared. The functional role of these neuropeptides and their origin within the efferent branch of this part of the peripheral autonomic nervous system is discussed. Furthermore, the implication of some of the neuropeptides studied in afferent renal innervation is also substantiated.Dedicated to Prof. Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

13.
Summary The occurrence and distribution of peptide-containing nerve fibres [substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), neuropeptide Y (NPY)] and noradrenergic nerve fibres [tyrosine hydroxylase (TH)- and dopamine beta hydroxylase (DBH)-positive] in the airways of the pig were studied by means of immunohistochemistry. SP- and CGRP-immunoreactive (-IR) nerve fibres were present close to and within the lining respiratory epithelium, around blood vessels, within the tracheobronchial smooth muscle layer and around local tracheobronchial ganglion cells. The content of CGRP- and neurokinin A (NKA)-like immunoreactivity (-LI) measured by radioimmunoassay (RIA) was twice as high in the trachea compared to that in the peripheral bronchi. SP was a more potent constrictor agent than NKA on pig bronchi in vitro. CGRP had a relaxant effect on precontracted pig bronchi. On blood vessels CGRP exerted a relaxant effect that was more pronounced on pulmonary arteries than on bronchial arteries. VIP/PHI-IR fibres were seen in association with exocrine glands and in the tracheobronchial smooth muscle layer. VIP-positive nerve fibres were abundant around blood vessels in the trachea but sparse or absent around blood vessels in the peripheral bronchi. This histological finding was supported by RIA; it was shown that the content of peptides displaying VIP-like immunoreactivity (-LI) was 18 times higher in the trachea compared to peripheral bronchi. VIP was equally potent as CGRP in relaxing precontracted pig bronchi in vitro. Both bronchial and pulmonary arteries were relaxed by VIP. NPY was colocalized with VIP in tracheal periglandular nerve fibres and in nerve fibres within the tracheobronchial smooth muscle layer. NPY was also present in noradrenergic (DBH-positive) vascular nerve fibres. The content of NPY was much higher (15-fold) in the trachea compared to small bronchi. NPY caused a contraction of both pulmonary and bronchial arteries. The bronchial smooth muscle contraction to field stimulation in vitro was purely cholinergic. A non-cholinergic relaxatory effect following field stimulation was observed after bronchial precontraction. Capsaicin had no effect on pig bronchi in vitro.  相似文献   

14.
Summary The projections of nerve fibres with immunoreactivity for the peptides enkephalin (ENK), gastrin-releasing peptide (GRP), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and vasoactive intestinal peptide (VIP) were studied in canine small intestine by analysing the consequences of lesions of intrinsic and extrinsic nerves. Of peptides present in fibres supplying myenteric ganglia, GRP, SOM and VIP were in anally directed nerve pathways, whereas ENK and NPY were in orally directed pathways. Pathways ran for up to about 30 mm. SP fibres ran for short distances in both directions in the myenteric plexus. The circular muscle was supplied with ENK, NPY, SP and VIP fibres arising from the myenteric ganglia, whereas most mucosal SP and VIP fibres were deduced to arise from submucous ganglia. There were projections of fibres reactive for ENK, GRP, SOM, SP and VIP from myenteric ganglia to submucous ganglia. Antibodies to tyrosine hydroxylase were used to locate noradrenaline nerve fibres supplying the intestine; these fibres all disappeared when extrinsic nerves running through the mesentery to the small intestine were cut. It is deduced that there is an ordered pattern of projections of peptide-containing fibres in the canine intestine.  相似文献   

15.
The presence and pattern of coexistence of some biologically active substances in nerve fibres supplying the mammary gland in the immature pig were studied using immunohistochemical methods. The substances studied included: protein gene product 9.5 (PGP), tyrosine hydroxylase (TH), somatostatin (SOM), neuropeptide Y (NPY), galanin (GAL), calcitonin gene-related peptide (CGRP) and substance P (SP). The mammary gland was found to be richly supplied by PGP-immunoreactive (PGP-IR) nerve fibres that surrounded blood vessels, bundles of smooth muscle cells and lactiferous ducts. The vast majority of these nerves also displayed immunoreactivity to TH. Immunoreactivity to SOM was observed in a moderate number of nerve fibres which were associated with smooth muscles of the nipple and blood vessels. Immunoreactivity to NPY occurred in many nerve fibres associated with blood vessels and in single nerves supplying smooth muscle cells. Solitary GAL-IR axons supplied mostly blood vessels. Many CGRP-IR nerve fibres were associated with both blood vessels and smooth muscles. SP-IR nerve fibres richly supplied blood vessels only. The colocalization study revealed that SOM, NPY and GAL partly colocalized with TH in nerve fibres supplying the porcine mammary gland.  相似文献   

16.
The distribution and concentrations of neuropeptide Y (NPY) in kidneys, renal arteries, heart, aorta, mesenteric artery and adrenal glands from aorta-ligated hypertensive rats were studied by immunocytochemistry and radioimmunoassay. Immunocytochemistry showed that in the hypertensive animals NPY-immunoreactive fibres were decreased in both kidney and renal artery, above and below the ligation, and in mesenteric arteries. The depletion of NPY-containing nerves in the kidney was more pronounced around the juxtaglomerular apparatus than in other areas of the organ. By radioimmunoassay, the concentrations of NPY immunoreactivity were significantly lower in the hypertensive animals when compared with the controls, (kidney: hypertensive 1.0 +/- 0.1; controls 2.0 +/- 0.2 pmol/g, mean +/- SEM; p less than 0.05 renal artery: hypertensive 5.0 +/- 0.8; controls 12.1 +/- 2.0; p less than 0.05 and mesenteric artery: hypertensive 8.6 +/- 1.9; 17.6 +/- 3.0; p less than 0.01). While there were no statistically significant changes in the levels of NPY immunoreactivity in the other areas studied, there was a general trend for the level to fall in the renal artery below the ligation (hypertensive 10.6 +/- 1.5; control 15.3 +/- 2.4; p greater than 0.05). It is of interest that changes were observed in the vasoconstrictor peptide NPY in this commonly used model of hypertension.  相似文献   

17.
Summary The occurrence of neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) in the sympathetic and parasympathetic innervation of the nasal mucosa was studied in various species including man. A dense network of NPY-immunoreactive (IR) fibres was present around arteries and arterioles in the nasal mucosa of all species studied. NPY was also located in nerves around seromucous glands in pig and guinea-pig, but not in rat, cat and man. The NPY-IR glandular innervation corresponded to about 20% of the NPY content of the nasal mucosa as revealed by remaining NPY content determined by radioimmunoassay after sympathectomy. These periglandular NPY-positive fibres had a distribution similar to the VIP-IR and PHI-IR nerves but not to the noradrenergic markers tyrosine hydroxylase (TH) or dopamine--hydroxylase (DBH). The NPY nerves around glands and some perivascular fibres were not influenced by sympathectomy and probably originated in the sphenopalatine ganglion where NPY-IR and VIP-IR ganglion cells were present. The venous sinusoids were innervated by NPY-positive fibres in all species except the cat. Dense NPY and DBH-positive innervation was seen around thick-walled vessels in the pig nasal mucosa; the latter may represent arterio-venous shunts. Double-labelling experiments using TH and DBH, and surgical sympathectomy revealed that the majority of NPY-IR fibres around blood vessels were probably noradrenergic. The NPY-positive perivascular nerves that remained after sympathectomy in the pig nasal mucosa also contained VIP/PHI-IR. The major nasal blood vessels, i.e. sphenopalatine artery and vein, were also densely innervated by NPY-IR fibres of sympathetic origin. Perivascular VIP-IR fibres were present around small arteries, arterioles, venous sinusoids and arterio-venous shunt vessels of the nasal mucosa whereas major nasal vessels received only single VIP-positive nerves. The trigeminal ganglion of the species studied contained only single TH-IR or VIP-IR but no NPY-positive ganglion cells. It is concluded that NPY in the nasal mucosa is mainly present in perivascular nerves of sympathetic origin. In some species, such as pig, glandular and perivascular parasympathetic nerves, probably of VIP/PHI nature, also contain NPY.  相似文献   

18.
Antarctic notothenioids have developed unique freezing-resistance adaptations, including brain diversification, to survive in the subzero waters of the Southern Ocean surrounding Antarctica. In this study we have investigated the anatomical distribution of neuropeptide tyrosine (NPY)-like immunoreactive elements in the brain of the Antarctic fish Trematomus bernacchii, by using an antiserum raised against porcine NPY. Perikarya exhibiting NPY-like immunoreactivity were observed in distinct regions of the brain. The most rostral group of immunoreactive perikarya was found in the telencephalon, within the entopeduncular nucleus. In the diencephalon, three groups of NPY-like immunoreactive perikarya were found in the hypothalamus. Two groups of positive cell bodies were found in distinct populations of the preoptic nucleus, whereas the other group was found in the nucleus of the lateral recess. More caudally, NPY immunoreactivity was detected in large neurons located in the subependymal layers of the dorsal tegmentum of the mesencephalon, medially to the torus semicircularis. NPY-like immunoreactive nerve fibres were more widely distributed throughout the telencephalon to the rhombencephalon. High densities of nerve fibres and terminals were observed in several regions of the telencephalon, olfactory bulbs, hypothalamus, tectum of the mesencephalon and in the ventral tegmentum of the rhombencephalon. The distribution of NPY-like immunoreactive structures suggests that, in Trematomus, this peptide may be involved in the control of several brain functions, including olfactory activity, feeding behaviour, and somatosensory and visual information. In comparison with other neuropeptides previously described in the brain of Antarctic fish, NPY is more widely distributed. Our data also indicate the existence of differences in the brain distribution of NPY between Trematomus and other teleosts. In contrast with previous results reported in other fish, Trematomus contains positive fibres in the olfactory bulbs and immunoreactive perikarya in the nucleus of the lateral recess, whereas NPY-immunopositive cell bodies are absent in the thalamus and rhombencephalon, and no NPY immunoreactivity is present in the pituitary. These differences could be related to the Antarctic ecological diversity of notothenioids living at subzero temperatures.  相似文献   

19.
Summary The pattern of distribution and reactivity of the neuropeptides vasopressin (AVP), vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), substance P (SP), and thyrotropin-releasing hormone (TRH) were studied in the suprachiasmatic nucleus (NSC) of 20 Richardson's ground squirrels (and 7 European hedgehogs) of both sexes during hibernation and euthermia. The total area of immunostained structures revealed by application of the individual immunocytochemical techniques was measured by means of computer-aided image analysis. In both species, elements of all peptide systems examined were related to particular subdivisions of the NSC. The pattern of immunoreactivity was strongly correlated with the physiological stage of hibernation or euthermia both in ground squirrels and hedgehogs. The immunoreactivities to AVP and SP increased in area during hibernation (AVP: 25%; SP: 25%), whereas the respective area immunoreactive to NPY and VIP decreased (NPY: 45%; VIP: 100%) in comparison to nonhibernating controls. The TRH-immunoreactive nerve fibers were rare and rather scattered; thus, the quantitative procedure was not applicable for this immunoreaction.Abbreviations AVP argnine vasopressin - NPY neuropeptide Y - NSC suprachiasmatic nucleus - SP substance P - TRH thyrotropinreleasing hormone - VIP vasoactive intestinal peptide The results have been partly presented at the 10th International Symposium on Neurosecretion held in Bristol, UK, September 1987  相似文献   

20.
Summary The pelvic ganglia supply cholinergic and noradrenergic nerve pathways to many organs. Other possible transmitters are also present in these nerves, including peptides. Multiple labelling immunofluorescence techniques were used in this study of the male rat major pelvic ganglion (MPG) to examine: (1) the peptides present in noradrenergic (tyrosine hydroxylase (TH)-positive) and non-noradrenergic (putative cholinergic) neurons, and (2) the types of peptide-containing nerve fibres closely associated with these two groups of neurons. The distribution of the peptide galanin (GAL) within the MPG was also investigated. All of the TH-neurons contained neuropeptide Y (NPY), but none of the other tested peptides. However, many NPY neurons did not contain TH and may have been cholinergic. TH-negative neurons also displayed vasoactive intestinal peptide (VIP), enkephalin (ENK) or GAL. VIP and NPY formed the most common types of putative cholinergic pelvic neurons, but few cells contained both peptides. Many ENK neurons exhibited VIP, NPY or GAL. Varicose nerve terminals surrounding ganglion cells contained ENK, GAL, somatostatin (SOM) and cholecystokinin (CCK). These peptide-immunoreactive fibres were more often associated with the non-noradrenergic (putative cholinergic) than the noradrenergic neurons; two types (SOM and CCK) were preferentially associated with the non-noradrenergic NPY neurons. GAL was distributed throughout the MPG, in small neurons, scattered small, intensely fluorescent (SIF) cells, and both varicose and non-varicose nerve fibres. The nerve fibres were concentrated near the pelvic and penile nerves; most of the varicose fibres formed baskets surrounding individual GAL-negative somata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号