首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Implantation of bone-marrow-derived MSCs (mesenchymal stem cells) has emerged as a potential treatment modality for liver failure, but in vivo differentiation of MSCs into functioning hepatocytes and its therapeutic effects have not yet been determined. We investigated MSC differentiation process in a rat model of TAA (thioacetamide)-induced liver cirrhosis. Male Sprague-Dawley rats were administered 0.04% TAA-containing water for 8 weeks, MSCs were injected into the spleen for transsplenic migration into the liver, and liver tissues were examined over 3 weeks. Ingestion of TAA for 8 weeks induced micronodular liver cirrhosis in 93% of rats. Injected MSCs were diffusely engrafted in the liver parenchyma, differentiated into CK19 (cytokeratin 19)- and thy1-positive oval cells and later into albumin-producing hepatocyte-like cells. MSC engraftment rate per slice was measured as 1.0-1.6%. MSC injection resulted in apoptosis of hepatic stellate cells and resultant resolution of fibrosis, but did not cause apoptosis of hepatocytes. Injection of MSCs treated with HGF (hepatocyte growth factor) in vitro for 2 weeks, which became CD90-negative and CK18-positive, resulted in chronological advancement of hepatogenic cellular differentiation by 2 weeks and decrease in anti-fibrotic activity. Early differentiation of MSCs to progenitor oval cells and hepatocytes results in various therapeutic effects, including repair of damaged hepatocytes, intracellular glycogen restoration and resolution of fibrosis. Thus, these results support that the in vivo hepatogenic differentiation of MSCs is related to the beneficial effects of MSCs rather than the differentiated hepatocytes themselves.  相似文献   

2.
3.
End‐stage liver disease can be the termination of acute or chronic liver diseases, with manifestations of liver failure; transplantation is currently an effective treatment for these. However, transplantation is severely limited due to the serious lack of donors, expense, graft rejection and requirement of long‐term immunosuppression. Mesenchymal stem cells (MSCs) have attracted considerable attention as therapeutic tools as they can be obtained with relative ease and expanded in culture, along with features of self‐renewal and multidirectional differentiation. Many scientific groups have sought to use MSCs differentiating into functional hepatocytes to be used in cell transplantation with liver tissue engineering to repair diseased organs. In most of the literature, hepatocyte differentiation refers to use of various additional growth factors and cytokines, such as hepatocyte growth factor (HGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), oncostatin M (OSM) and more, and most are involved in signalling pathway regulation and cell–cell/cell–matrix interactions. Signalling pathways have been shown to play critical roles in embryonic development, tumourigenesis, tumour progression, apoptosis and cell‐fate determination. However, mechanisms of MSCs differentiating into hepatocytes, particularly signalling pathways involved, have not as yet been completely illustrated. In this review, we have focused on progress of signalling pathways associated with mesenchymal stem cells differentiating into hepatocytes along with the stepwise differentiation procedure.  相似文献   

4.
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues.  相似文献   

5.
《Organogenesis》2013,9(2):208-215
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues.  相似文献   

6.
Liver stem cells give rise to both hepatocytes and bile duct epithelial cells also known as cholangiocytes. During liver development hepatoblasts emerge from the foregut endoderm and give rise to both cell types. Colony-forming cells are present in the liver primordium and clonally expanded cells differentiate into either hepatocytes or cholangiocytes depending on culture conditions, showing stem cell characteristics. The growth and differentiation of hepatoblasts are regulated by various extrinsic signals. For example, periportal mesenchymal cells provide a cue for bipotential hepatoblasts to become cholangiocytes, and mesothelial cells covering the parenchyma support the expansion of foetal hepatocytes by producing growth factors. The adult liver has an extraordinary capacity to regenerate, and after 70% hepatectomy the liver recovers its original mass by replication of the remaining hepatocytes without the activation of liver stem cells. However, in certain types of liver injury models, liver stem/progenitor-like cells, known as oval cells in rodents, proliferate around the portal vein, while the roles of such cells in liver regeneration remain a matter of debate. Clonogenic and bipotential cells are also present in the normal adult liver. In this minireview we describe recent studies on liver stem/progenitor cells by focusing on extracellular signals.  相似文献   

7.
Telomerase deficiency impairs differentiation of mesenchymal stem cells   总被引:8,自引:0,他引:8  
Expression of telomerase activity presumably is involved in maintaining self-replication and the undifferentiated state of stem cells. Adult mouse bone marrow mesenchymal stem cells (mMSCs) are multipotential cells capable of differentiating into a variety of lineage cell types, including adipocytes and chondrocytes. Here we show that the lacking telomerase of mMSC lose multipotency and the capacity to differentiate. Primary cultures of mMSCs were obtained from both telomerase knockout (mTR(-/-)) and wild-type (WT) mice. The MSCs isolated from mTR(-/-) mice failed to differentiate into adipocytes and chondrocytes, even at early passages, whereas WT MSCs were capable of differentiation. Consistent with other cell types, late passages mTR(-/-)MSCs underwent senescence and were accompanied by telomere loss and chromosomal end-to-end fusions. These results suggest that in addition to its known role in cell replication, telomerase is required for differentiation of mMSCs in vitro. This work may be significant for further potentiating adult stem cells for use in tissue engineering and gene therapy and for understanding the significance of telomerase expression in the process of cell differentiation.  相似文献   

8.
The identity of pancreatic stem/progenitor cells is still under discussion. They were suggested to derive from the pancreatic ductal epithelium and/or islets. Here we report that rat pancreatic stellate cells (PSC), which are thought to contribute to pancreatic fibrosis, have stem cell characteristics. PSC reside in islets and between acini and display a gene expression pattern similar to umbilical cord blood stem cells and mesenchymal stem cells. Cytokine treatment of isolated PSC induced the expression of typical hepatocyte markers. The PSC-derived hepatocyte-like cells expressed endodermal proteins such as bile salt export pump along with the mesodermal protein vimentin. The transplantation of culture-activated PSC from enhanced green fluorescent protein-expressing rats into wild type rats after partial hepatectomy in the presence of 2-acetylaminofluorene revealed that PSC were able to reconstitute large areas of the host liver through differentiation into hepatocytes and cholangiocytes. This developmental fate of transplanted PSC was confirmed by fluorescence in situ hybridization of chromosome Y after gender-mismatched transplantation of male PSC into female rats. Transplanted PSC displayed long-lasting survival, whereas muscle fibroblasts were unable to integrate into the host liver. The differentiation potential of PSC was further verified by the transplantation of clonally expanded PSC. PSC clones maintained the expression of stellate cell and stem cell markers and preserved their differentiation potential, which indicated self-renewal potential of PSC. These findings demonstrate that PSC have stem cell characteristics and can contribute to the regeneration of injured organs through differentiation across tissue boundaries.  相似文献   

9.
《Organogenesis》2013,9(2):268-277
Recent studies suggest that organ decellularization is a promising approach to facilitate the clinical application of regenerative therapy by providing a platform for organ engineering. This unique strategy uses native matrices to act as a reservoir for the functional cells which may show therapeutic potential when implanted into the body. Appropriate cell sources for artificial livers have been debated for some time. The desired cell type in artificial livers is primary hepatocytes, but in addition, other supportive cells may facilitate this stem cell technology. In this context, the use of mesenchymal stem cells (MSC) is an option meeting the criteria for therapeutic organ engineering. Ideally, supportive cells are required to (1) reduce the hepatic cell mass needed in an engineered liver by enhancing hepatocyte function, (2) modulate hepatic regeneration in a paracrine fashion or by direct contact, and (3) enhance the preservability of parenchymal cells during storage. Here, we describe enhanced hepatic function achieved using a strategy of sequential infusion of cells and illustrate the advantages of co-cultivating bone marrow-derived MSCs with primary hepatocytes in the engineered whole-liver scaffold. These co-recellularized liver scaffolds colonized by MSCs and hepatocytes were transplanted into live animals. After blood flow was established, we show that expression of adhesion molecules and proangiogenic factors was upregulated in the graft.  相似文献   

10.
Recent studies suggest that organ decellularization is a promising approach to facilitate the clinical application of regenerative therapy by providing a platform for organ engineering. This unique strategy uses native matrices to act as a reservoir for the functional cells which may show therapeutic potential when implanted into the body. Appropriate cell sources for artificial livers have been debated for some time. The desired cell type in artificial livers is primary hepatocytes, but in addition, other supportive cells may facilitate this stem cell technology. In this context, the use of mesenchymal stem cells (MSC) is an option meeting the criteria for therapeutic organ engineering. Ideally, supportive cells are required to (1) reduce the hepatic cell mass needed in an engineered liver by enhancing hepatocyte function, (2) modulate hepatic regeneration in a paracrine fashion or by direct contact, and (3) enhance the preservability of parenchymal cells during storage. Here, we describe enhanced hepatic function achieved using a strategy of sequential infusion of cells and illustrate the advantages of co-cultivating bone marrow-derived MSCs with primary hepatocytes in the engineered whole-liver scaffold. These co-recellularized liver scaffolds colonized by MSCs and hepatocytes were transplanted into live animals. After blood flow was established, we show that expression of adhesion molecules and proangiogenic factors was upregulated in the graft.  相似文献   

11.
Tissues of the adult organism maintain the homeostasis and respond to injury by means of progenitor/stem cell compartments capable to give rise to appropriate progeny. In organs composed by histotypes of different embryological origins (e.g. the liver), the tissue turnover may in theory involve different stem/precursor cells able to respond coordinately to physiological or pathological stimuli. In the liver, a progenitor cell compartment, giving rise to hepatocytes and cholangiocytes, can be activated by chronic injury inhibiting hepatocyte proliferation. The precursor compartment guaranteeing turnover of hepatic stellate cells (HSCs) (perisinusoidal cells implicated with the origin of the liver fibrosis) in adult organ is yet unveiled. We show here that epithelial and mesenchymal liver cells (hepatocytes and HSCs) may arise from a common progenitor. Sca+ murine progenitor cells were found to coexpress markers of epithelial and mesenchymal lineages and to give rise, within few generations, to cells that segregate the lineage-specific markers into two distinct subpopulations. Notably, these progenitor cells, clonally derived, when transplanted in healthy livers, were found to generate epithelial and mesenchymal liver-specific derivatives (i.e. hepatocytes and HSCs) properly integrated in the liver architecture. These evidences suggest the existence of a ‘bona fide'' organ-specific meso-endodermal precursor cell, thus profoundly modifying current models of adult progenitor commitment believed, so far, to be lineage-restricted. Heterotopic transplantations, which confirm the dual differentiation potentiality of those cells, indicates as tissue local cues are necessary to drive a full hepatic differentiation. These data provide first evidences for an adult stem/precursor cell capable to differentiate in both parenchymal and non-parenchymal organ-specific components and candidate the liver as the instructive site for the reservoir compartment of HSC precursors as yet non-localized in the adult.  相似文献   

12.
While organ-specific stem cells with roles in tissue injury repair have been documented, their pathogenic significance in diseases and the factors potentially responsible for their activation remain largely unclear. In the present study, heart, kidney, brain, and skin samples from F344 transgenic rats carrying the GFP gene were transplanted into normal F344 rat liver one day after an intraperitoneal injection (i.p.) of carbon tetrachloride (CCl(4)) to test their differentiation capacity. The transplantation was carried out by female donors to male recipients, and vice versa. One week after transplantation, GFP antigen-positive cells with phenotypic characteristics of hepatocytes were noted. After two weeks, their extent increased, and at 4 weeks, large areas of strongly GFP-stained cells developed. All recipient livers had GFP antigen-positive hepatocyte cells. PCR analysis coupled with laser capture micro-dissection (LCM) revealed those cells to contain GFP DNA. Thus, our results indicate that tissue stem cells have multipotential ability, differentiating into hepatocytes when transplanted into an injured liver.  相似文献   

13.
Ling L  Ni Y  Wang Q  Wang H  Hao S  Hu Y  Jiang W  Hou Y 《Cell biology international》2008,32(9):1091-1098
The great shortage of human hepatic cells makes it desirable to generate extrahepatic stem or precursor cells. In recent years, it has been reported that human multipotential mesenchymal stem cells (hMSCs) differentiate into hepatocyte-like cells. The fetal lung is one of the largest organs containing many MSCs that can be easily obtained. Whether MSCs from fetal lung can differentiate into hepatocytes or bile duct cells is an important issue in basic medicine and clinical application. We isolated fetal lung cells, and expanded and analyzed them. At passage 4, their morphologic, immunophenotyping and cytokine secretions were similar to adult bone marrow-derived MSCs. We conclude that these cells from fetal lung are MSCs, indicating that human fetal lung is an ideal source of hMSCs. hMSCs from fetal lung induced in special differentiation medium showed homogeneous and small polygonal endothelial-like morphology, expressing weak mRNA, as well as Alb and AFP. This implies that hMSCs from fetal lung can differentiate into hepatocyte-like cells.  相似文献   

14.
Mesenchymal stem cells (MSCs) have been isolated not only from bone marrow, but also from many other tissues such as adipose tissue, skeletal muscle, liver, brain and pancreas. Because MSC were found to have the ability to differentiate into cells of multiple organs and systems such as bone, fat, cartilage, muscle, neurons, hepatocytes and insulin-producing cells, MSCs have generated a great deal of interest for their potential use in regenerative medicine and tissue engineering. Furthermore, given the ease of their isolation and their extensive expansion rate and differentiation potential, mesenchymal stem cells are among the first stem cell types that have a great potential to be introduced in the clinic. Finally, mesenchymal stem cells seem to be not only hypoimmunogenic and thus be suitable for allogeneic transplantation, but they are also able to produce immunosuppression upon transplantation. In this review we summarize the latest research in the use of mesenchymal stem cells in transplantation for generalized diseases, local implantation for local tissue defects, and as a vehicle for genes in gene therapy protocols.  相似文献   

15.
We have previously reported that bone marrow cells (BMCs) participate in the regeneration after liver injury. However, it is not established that this is the result of differentiation of hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) or the combination of both. We investigated the contribution of each cell fraction to the regenerative process. First, we confirmed that transplanted stem cells migrate directly to injured liver tissue without dispersing to other organs. Next, we divided green fluorescent protein (GFP)-expressing BMCs into three populations as mononuclear cells, MSCs and HSCs. We then compared the engraftment capacity after transplantation of each fraction of cells into liver-injured mice. Of these, the MSCs transplanted group showed the highest GFP fluorescence intensities in liver tissue by flow cytometry analysis and confocal microscopic observation. Furthermore, MSCs showed differentiation potential into hepatocytes when co-cultured with injured liver cells, which suggests that MSCs showed highest potential for the regeneration of injured liver tissue compared with those of the other two cell refractions.  相似文献   

16.
17.
Isolated primary hepatocytes from the liver are very similar to in vivo native liver hepatocytes, but they have the disadvantage of a limited lifespan in 2D culture. Although a sandwich culture and 3D organoids with mesenchymal stem cells (MSCs) as an attractive assistant cell source to extend lifespan can be used, it cannot fully reproduce the in vivo architecture. Moreover, long-term 3D culture leads to cell death because of hypoxic stress. Therefore, to overcome the drawback of 2D and 3D organoids, we try to use a 3D printing technique using alginate hydrogels with primary hepatocytes and MSCs. The viability of isolated hepatocytes was more than 90%, and the cells remained alive for 7 days without morphological changes in the 3D hepatic architecture with MSCs. Compared to a 2D system, the expression level of functional hepatic genes and proteins was higher for up to 7 days in the 3D hepatic architecture. These results suggest that both the 3D bio-printing technique and paracrine molecules secreted by MSCs supported long-term culture of hepatocytes without morphological changes. Thus, this technique allows for widespread expansion of cells while forming multicellular aggregates, may be applied to drug screening and could be an efficient method for developing an artificial liver.  相似文献   

18.
19.
目的探讨PDMSCs向肝细胞增殖和分化的体外培养条件及方法。方法孕20 d的大鼠无菌条件下取胎盘,经胶原酶消化、密度离心、贴壁筛选法分离培养胎盘源间充质干细胞,并对其表面抗原进行鉴定。在体外培养体系中加入胎肝滤液,模拟体内肝脏微环境,诱导PDMSCs向肝细胞定向分化,以免疫细胞化学检测干细胞标志物;PAS检测糖原表达。结果在体外培养条件下,PDMSCs贴壁生长为成纤维样细胞,CD44表面标志物检测阳性;PDMSCs经胎肝滤液诱导14d时细胞呈现圆形、卵圆形的特征性改变,AFP、CK19表达阳性。结论胎肝滤液能够诱导PDMSCs定向分化为肝细胞样细胞。  相似文献   

20.
本研究主要目的是明确M-CSF诱导骨髓间充质干细胞分化为肝样细胞的分子机制,为临床中的肝移植和治疗肝病提供新思路。对取自于本院骨科治疗的患者的股骨骨髓间充质干细胞进行提取、分离、传代培养及鉴定。流式细胞仪检测BMSCs的表面表型。为了诱导BMSCs的肝分化,本研究将BMSCs加入到培养基中。骨髓间充质干细胞诱导21 d后,BMSCs表达了肝细胞特异性标志物a-蛋白(AFP)和细胞角蛋白18(CK18),通过免疫荧光染色证实了分化与为分化的BMSCs表达的差异性。分化的BMSCs还显示了肝细胞的体外功能特征,包括白蛋白产生、尿素分泌和糖原储存。本研究结果表明,BMSCs在M-CSF诱导下可分化为功能性肝细胞样细胞,可作为肝病治疗的细胞来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号