首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
 In the present study three novel genes from barley accessions 10247 (ym8), Bulgarian 347 (ym9), and Russia 57 (ym11), which confer resistance to Barley Mild Mosaic Virus (BaMMV), were mapped using molecular markers. Bulked segregant analysis of four progenies segregating for resistance to BaMMV was followed by fine-scale mapping of the resistance genes using individual F2 or BC1F2 plants. The resistance genes are inherited recessively and are located on the long arm of barley chromosome 4HL. A series of closely linked molecular markers are available for marker-assisted breeding programs. A marker (MWG2134) linked with resistance gene ym11 from Russia 57 was identified, which is diagnostic for the resistance gene. Received: 25 July 1997 / Accepted: 22 August 1997  相似文献   

2.
lexuous filamentous, rod-shaped particles, and laminated, pinwheel inclusions were observed in the mesophyll cells of the barley plants naturally infected with barley yellow mosaic viruses. These virus particles had a length of 480–920 nm and a width of 10–20 nm. In addition, bundles of filamentous structures which consisted of many particles with more 2000 nm in length were found in the leaves of the infected barley plants. The ultrastructural alterations of the infected mesophyll cells were rather conspicuous. The cytoplasmic matrix was lost seriously, and the chloroplast membrane system was destroyed. The cristae and matrix of the mitochondrium were decreased and some of them became vacuoles. The endoplasmic reticulum (ER) expanded teristic membranous network structures occurred in the cytoplasm of infected cells. The virus particles were often associated at one end with ER and with the membranes of network structures. The nucleus, membrane and wall of ceils also had somewhat variation.  相似文献   

3.
超薄切片电镜观察表明,在感染大麦黄花叶病毒(BaYMV)的大麦(品种“早熟3号”)叶肉细胞中,液泡周围偶而可看到病毒颗粒束,在发病后期黄化或坏死的叶肉细胞中,可见到散布的病毒颗粒。在所有表现症状的病叶叶肉细胞,表皮细胞和木质部薄壁细胞中均可观察到风轮体、束状体、板状集结体以及膜状体等细胞质内含体,未见 卷简体和细胞核内含体。感病初期细胞中,细胞质丰富,核糖体数量增加,内质网肥大,随着病毒症状发喂,叶绿体、线粒体等细胞器逐渐肿大,外膜破裂直至解体。  相似文献   

4.
F(ab′)_2酶联免疫吸附分析法(F(ab′)_2-ELISA)成功地用于大麦黄花叶病毒(BaYMV)的常规检测和诊断.其步骤是先用稀释1000—4000倍的抗血清F(ab′)_2包被反应板,加待测样品和稀释1000倍的同种抗血清或IgG,然后再加A蛋白碱性磷酸酯酶和底物,测定OD值。比较试验表明,ELISA稀释缓冲液加入1%小牛血清或1%全脂奶粉,BaYMV的测检灵敏度可提高达2.5—5.0ng/ml,病叶汁液检测终浓度为稀释1600—3200倍。我国BaYMV分离物与英国分离物的血清学性质完全一致。BaYMV在大麦病株中以叶部含量较高,茎中含量次之,根部测不出病毒。检测和诊断田间样品,即使有的样品已不新鲜,也均能得到满意的结果。此方法也成功地用于大麦温和花叶病毒(BaMMV)、小麦黄花叶病毒(WYMV)、燕麦花叶病毒(OMV)和燕麦金色条纹病毒(OGSV)等禾谷多粘菌传麦毒的检测,这S种病毒的血清学关系研究表明,除BaYMV和WYMV之间具有血清学关系以外,其余彼此均不反应。  相似文献   

5.
 Thirty-six Hordeum vulgare varieties and 12 H. spontaneum germplasms originating from different parts of the world and showing different reactions to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) were analyzed for genetic similarity using RAPDs. On the basis of an analysis of 20 selected RAPD-primers corresponding to 544 bands genetic similarity according to Nei and Li (1979) was estimated to be between 0.685 and 0.964. Associations between the 48 genotypes were calculated using UPGMA-clustering and principal coordinate analysis. By applying these methods we were able to separate H. spontaneum accessions from H. vulgare varieties, and within these groups all the genotypes were clustered correctly according to their origin. Consequently, RAPD analysis can be considered a very useful and efficient tool for the fast estimation of genetic relationships in barley. The correlation between genetic similarity with respect to German varieties and adaptation of exotic barley varieties to German growing conditions is discussed. Received: 21 May 1996 / Accepted: 5 July 1996  相似文献   

6.
The potato (Solanum tuberosum) disease resistance protein Rx has a modular arrangement that contains coiled-coil (CC), nucleotide-binding (NB), and leucine-rich repeat (LRR) domains and mediates resistance to potato virus X. The Rx N-terminal CC domain undergoes an intramolecular interaction with the Rx NB-LRR region and an intermolecular interaction with the Rx cofactor RanGAP2 (Ran GTPase-activating protein 2). Here, we report the crystal structure of the Rx CC domain in complex with the Trp-Pro-Pro (WPP) domain of RanGAP2. The structure reveals that the Rx CC domain forms a heterodimer with RanGAP2, in striking contrast to the homodimeric structure of the CC domain of the barley disease resistance protein MLA10. Structure-based mutagenesis identified residues from both the Rx CC domain and the RanGAP2 WPP domain that are crucial for their interaction and function in vitro and in vivo. Our results reveal the molecular mechanism underlying the interaction of Rx with RanGAP2 and identify the distinct surfaces of the Rx CC domain that are involved in intramolecular and intermolecular interactions.  相似文献   

7.
Hand, foot, and mouth disease(HFMD) recently emerged as a global public threat. The licensure of inactivated enterovirus A71(EV-A71) vaccine was the first step in using a vaccine to control HFMD. New challenges arise from changes in the pathogen spectrum while vaccines directed against other common serotypes are in the preclinical stage. The mission of a broad-spectrum prevention strategy clearly favors multivalent vaccines. The development of multivalent vaccines was attempted via the simple combination of potent monovalent vaccines or the construction of chimeric vaccines comprised of epitopes derived from different virus serotypes. The present review summarizes recent advances in HFMD vaccine development and discusses the next steps toward a safe and effective HFMD vaccine that is capable of establishing a crossprotective antibody response.  相似文献   

8.
MPS1 kinase is an essential component of the spindle assembly checkpoint (SAC), but its functioning mechanisms are not fully understood. We have shown recently that direct interaction between BUBR1 and MAD2 is critical for assembly and function of the human mitotic checkpoint complex (MCC), the SAC effector. Here we report that inhibition of MPS1 kinase activity by reversine disrupts BUBR1-MAD2 as well as CDC20-MAD2 interactions, causing premature activation of the anaphase-promoting complex/cyclosome. The effect of MPS1 inhibition is likely due to reduction of closed MAD2 (C-MAD2), as expressing a MAD2 mutant (MAD2L13A) that is locked in the C conformation rescued the checkpoint defects. In the presence of reversine, exogenous C-MAD2 does not localize to unattached kinetochores but is still incorporated into the MCC. Contrary to a previous report, we found that sustained MPS1 activity is required for maintaining both the MAD1·C-MAD2 complex and open MAD2 (O-MAD2) at unattached kinetochores to facilitate C-MAD2 production. Additionally, mitotic phosphorylation of BUBR1 is also affected by MPS1 inhibition but seems dispensable for MCC assembly. Our results support the notion that MPS1 kinase promotes C-MAD2 production and subsequent MCC assembly to activate the SAC.  相似文献   

9.
Thymine DNA glycosylase (TDG) initiates the repair of G·T mismatches that arise by deamination of 5-methylcytosine (mC), and it excises 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC. TDG functions in active DNA demethylation and is essential for embryonic development. TDG forms a tight enzyme-product complex with abasic DNA, which severely impedes enzymatic turnover. Modification of TDG by small ubiquitin-like modifier (SUMO) proteins weakens its binding to abasic DNA. It was proposed that sumoylation of product-bound TDG regulates product release, with SUMO conjugation and deconjugation needed for each catalytic cycle, but this model remains unsubstantiated. We examined the efficiency and specificity of TDG sumoylation using in vitro assays with purified E1 and E2 enzymes, finding that TDG is modified efficiently by SUMO-1 and SUMO-2. Remarkably, we observed similar modification rates for free TDG and TDG bound to abasic or undamaged DNA. To examine the conjugation step directly, we determined modification rates (kobs) using preformed E2∼SUMO-1 thioester. The hyperbolic dependence of kobs on TDG concentration gives kmax = 1.6 min−1 and K1/2 = 0.55 μm, suggesting that E2∼SUMO-1 has higher affinity for TDG than for the SUMO targets RanGAP1 and p53 (peptide). Whereas sumoylation substantially weakens TDG binding to DNA, TDG∼SUMO-1 still binds relatively tightly to AP-DNA (Kd ∼50 nm). Although E2∼SUMO-1 exhibits no specificity for product-bound TDG, the relatively high conjugation efficiency raises the possibility that E2-mediated sumoylation could stimulate product release in vivo. This and other implications for the biological role and mechanism of TDG sumoylation are discussed.  相似文献   

10.
Kuan TC  Yang TH  Wen CH  Chen MY  Lee IL  Lin CS 《Peptides》2011,32(9):1832-1839
Angiotensin-converting enzyme 2 (ACE2) has been proposed as a potential target for cardioprotection in regulating cardiovascular functions, owing to its key role in the formation of the vasoprotective peptides angiotensin-(1-7) from angiotensin II (Ang II). The regulatory mechanism of ace2 expression, however, remains to be explored. In this study, we investigated the regulatory element within the upstream of ace2. The human ace2 promoter region, from position −2069 to +20, was cloned and a series of upstream deletion mutants were constructed and cloned into a luciferase reporter vector. The reporter luciferase activity was analyzed by transient transfection of the constructs into human cardiofibroblasts (HCFs) and an activating domain was identified in the −516/−481 region. Deletion or reversal of this domain within ace2 resulted in a significant decrease in promoter activity. The nuclear proteins isolated from the HCFs formed a DNA-protein complex with double stranded oligonucleotides of the −516/−481 domain, as detected by electrophoretic mobility shift assay. Site-directed mutagenesis of this region identified a putative protein binding domain and a potential binding site, ATTTGGA, homologous to that of an Ikaros binding domain. This regulatory element was responsible for Ang II stimulation via the Ang II-Ang II type-1 receptor (AT1R) signaling pathway, but was not responsible for pro-inflammatory cytokines TGF-β1 and TNF-α. Our results suggest that the nucleotide sequences −516/−481 of human ace2 may be a binding domain for an as yet unidentified regulatory factor(s) that regulates ace2 expression and is associated with Ang II stimulation.  相似文献   

11.
ERBB2, a receptor tyrosine kinase amplified in breast cancer, is a well established regulator of tumor growth in vivo and anoikis resistance leading to disruption of architecture in three-dimensional mammary epithelial acinar structures in vitro. ERBB2 promotes anoikis resistance by maintaining signaling pathways and by rescuing metabolic defects and thus inhibiting accumulation of deleterious reactive oxygen species. Recent evidence suggests that hypoxia, via hypoxia-inducible factors (HIFs), can inhibit anoikis; thus, we hypothesized that HIF-1 may play a role in ERBB2-mediated anoikis resistance and oncogenesis. Indeed, tumors isolated from MMTV-Neu mice contain elevated HIF-1α levels and tumor cells created from MMTV-Neu mice harboring deletion of Hif1α alleles reduced primary tumor growth in vivo. ERBB2 overexpressing cancer cells stabilize HIF under normoxic conditions and require HIF-1 for ERBB2-mediated anchorage-independence, three-dimensional culture growth and anoikis resistance. HIF-1 reduction in ERBB2 cells was associated with induction of the pro-anoikis protein BIM and decreased ERK and AKT signaling during cell detachment. ERBB2-mediated inhibition of metabolic defects, including decreased reactive oxygen species generation in suspension, required HIF-1 expression that was critical for ERBB2-mediated oncogenesis. Gene expression profiling of hypoxic three-dimensional acinar structures identified a number of genes elevated in response to hypoxia that are known ERBB2 targets, suggesting that hypoxic conditions and ERBB2 overexpression share both phenotypic and genetic components via HIF-1 regulation. Thus, our data demonstrate that ERBB2 requires HIF-1 for tumor growth and suggest that HIF is a major downstream regulator of ERBB2 that protects cells from anoikis and metabolic stress caused by decreased matrix adhesion.  相似文献   

12.
Human LANCL2, also known as Testis-specific Adriamycin Sensitivity Protein (TASP), is a member of the highly conserved and widely distributed lanthionine synthetase component C-like (LANCL) protein family. Expression studies of tagged LANCL2 revealed the major localization to the plasma membrane, juxta-nuclear vesicles, and the nucleus, in contrast to the homologue LANCL1 that was mainly found in the cytosol and nucleus. We identified the unique N-terminus of LANCL2 to function as the membrane anchor and characterized the relevant N-terminal myristoylation and a basic phosphatidylinositol phosphate-binding site. Interestingly, the non-myristoylated protein was confined to the nucleus indicating that the myristoylation targets LANCL2 to the plasma membrane. Cholesterol depletion by methyl-β-cyclodextrin caused the partial dissociation of overexpressed LANCL2 from the plasma membrane in vitro, whereas in vivo we observed an enhanced cell detachment from the matrix. We found that overexpressed LANCL2 interacts with the cortical actin cytoskeleton and therefore may play a role in cytoskeleton reorganization and in consequence to cell detachment. Moreover, we confirmed previous data that LANCL2 overexpression enhances the cellular sensitivity to the anticancer drug adriamycin and found that this sensitivity is dependent on the myristoylation and membrane association of LANCL2.  相似文献   

13.
Relationship of donor and acceptor fluorescence anisotropies as well as efficiency of fluorescence resonance energy transfer (FRET) has been investigated in a confocal microscope in the context of FRET systems comprised of donor and acceptor-labeled MHCI and MHCII receptors on the surface of Kit-225 K6 human T-cells. The measurements have been carried out in a 2-laser, 5-signal platform where the total donor fluorescence intensity and 2 acceptor fluorescence intensities with their anisotropies – one at the donor's excitation wavelength, the other at the acceptor's excitation wavelength – have been detected. This configuration enabled the determination of FRET efficiency and correlating it with the two acceptor fluorescence anisotropies as a kind of calibration. Estimations for the FRET-enhanced donor fluorescence anisotropy, the directly excited acceptor fluorescence anisotropy, and the fluorescence anisotropy of sensitized emission have been obtained. Procedures for determining FRET by measuring only the total donor intensity and the acceptor intensity and its anisotropy, or two acceptor intensities and their anisotropies have been elaborated, the errors of which have been estimated based on the fluorescence anisotropy values obtained in the calibration with the method of flow cytometric energy transfer (FCET).The combined detection of the donor and acceptor fluorescence anisotropies enabled also the determination of the lower and upper limits of the orientation factor for FRET (κ2). An increase in range for κ2 with increasing FRET efficiency has been observed, with average κ2 values different from the dynamic random average of 2/3. These observations call for the need of κ2 determination in proximity measurements, where the donor and acceptor orientations are not predictable.An increasing range of κ2 with increasing intermolecular proximity of the MHCI and MHCII receptors has been observed. This indicates that molecular flexibility in the clusters of the MHCI and MHCII receptors reduces with increasing cluster density, i.e. a “fluidity gradient” exists in the clusters. More specifically, the local density dependent flexibility can also be taken as a direct proof for that the association of these receptors is non-random, but mediated by some type of physical interaction, a finding as a benefit of FRET detection by polarization spectroscopy.Two new quantities – the quenched donor fluorescence anisotropy and a fluorescence anisotropy analogue, the “dissymmetry index” of the polarized FRET efficiency components – have also been introduced for the characterization of the orientational dynamics of the excited state during FRET.  相似文献   

14.
The number and subunit composition of synaptic N-methyl-d-aspartate receptors (NMDARs) play critical roles in synaptic plasticity, learning, and memory and are implicated in neurological disorders. Tyrosine phosphorylation provides a powerful means of regulating NMDAR function, but the underling mechanism remains elusive. In this study we identified a tyrosine site on the GluN2B subunit, Tyr-1070, which was phosphorylated by a proto-oncogene tyrosine-protein (Fyn) kinase and critical for the surface expression of GluN2B-containing NMDARs. The phosphorylation of GluN2B at Tyr-1070 was required for binding of Fyn kinase to GluN2B, which up-regulated the phosphorylation of GluN2B at Tyr-1472. Moreover, our results revealed that the phosphorylation change of GluN2B at Tyr-1070 accompanied the Tyr-1472 phosphorylation and Fyn associated with GluN2B in synaptic plasticity induced by both chemical and contextual fear learning. Taken together, our findings provide a new mechanism for regulating the surface expression of NMDARs with implications for synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号