首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In winter and early spring 2004 unequivocal mosaic symptoms were detected for the first time in Germany on six plants of the barley cv. ‘Tokyo’ carrying the resistance gene rym5. By serological and electron microscopic investigations Barley mild mosaic virus (BaMMV) was identified in all plants and could be re‐transmitted to cv. ‘Tokyo’ as well as to additional cultivars carrying rym5. In contrast to this, genotypes carrying the resistance genes rym1 + rym5, Rym2, rym4, rym7, rym9, rym11, rym12, rym13, Rym14Hb, rym15 or Rym16Hb turned out to be resistant. Furthermore, the BaMMV isolates were not transmissible to different dicotyledonous species. Sequence analyses in the VPg coding region of RNA1 revealed differences to the known sequence of the original BaMMV isolate (BaMMV‐ASL1, AJ 242725) and also of a French pathotype (BaMMV‐Sil, AJ 544267, AJ 544268) which is also able to overcome the resistance mediated by rym5. At least in one location a spread of the area infested by this new strain was observed in 2004/2005 and 2005/2006.  相似文献   

2.

Key message

Unlocking allelic diversity of the bymovirus resistance gene rym11 located on proximal barley chromosome 4HL and diagnostic markers provides the basis for precision breeding for BaMMV/BaYMV resistance.

Abstract

The recessive resistance gene rym11 on barley chromosome 4HL confers broad-spectrum and complete resistance to all virulent European isolates of Barley mild mosaic virus and Barley yellow mosaic virus (BaMMV/BaYMV). As previously reported, rym11-based resistance is conferred by a series of alleles of naturally occurring deletions in the gene HvPDIL5-1, encoding a protein disulfide isomerase-like protein. Here, a novel resistance-conferring allele of rym11 is reported that, in contrast to previously identified resistance-conferring variants of the gene HvPDIL5-1, carries a single non-synonymous amino acid substitution. Allelism was confirmed by crossing to genotypes carrying previously known rym11 alleles. Crossing rym11 genotypes with a cultivar carrying the recessive resistance gene rym1, which was reported to reside on the same chromosome arm 4HL like rym11, revealed allelism of both loci. This allelic state was confirmed by re-sequencing HvPDIL5-1 in the rym1 genotype, detecting the haplotype of the rym11-d allele. Diagnostic PCR-based markers were established to differentiate all seven resistance-conferring alleles of the rym11 locus providing precise tools for marker-assisted selection (MAS) of rym11 in barley breeding.  相似文献   

3.
Barley yellow mosaic disease caused by the bymoviruses barley mild mosaic virus (BaMMV) and barley yellow mosaic virus (BaYMV) is one of the economically most important diseases of winter barley in Europe. In European barley breeding programmes, resistance is currently due to only two genes—rym4, which is effective against viruses BaMMV and BaYMV-1, and rym5, which is effective against BaYMV-2. Diversification of resistance is therefore an important task. Because the accession PI1963 confers immunity against all European strains of barley yellow mosaic disease and is not allelic to rym5, we have attempted to develop closely linked markers in order to facilitate the efficient introgression of this resistance into adapted germplasm. By means of restriction fragment length polymorphism analysis, we located a gene locus for resistance to BaMMV, BaYMV-1 and BaYMV-2 of PI1963 on chromosome 4HL using a mapping population (W757) comprising 57 doubled haploid (DH) lines. Subsequent tests for allelism indicated that the BaMMV resistance gene in PI1963 is allelic to rym11. Two DH populations, IPK1 and IPK2, comprising 191 and 161 DH lines, respectively, were derived from the initial mapping population W757 and used for further analysis. As random amplified polymorphic DNA development did not facilitate the identification of more closely linked markers, simple sequence repeat (SSR) analyses were conducted. For population IPK1, the closest SSRs detected were Bmac181 and Bmag353, which flank the gene at 2.1 cM and 2.7 cM, respectively. For the IPK2 population, the SSR markers HVM3 and Bmag353 are located proximally at 2.5 cM and distally at 8.2 cM, respectively. In order to develop markers more tightly linked to rym11, a targeted amplified fragment length polymorphism (AFLP) marker identification approach was adopted using bulks comprising lines carrying recombination events proximal and distal to the target interval. Using this approach we identified six AFLP markers closely linked to rym11, with the two markers, E56M32 and E49M33, co-segregating with rym11 in both populations. The SSRs and AFLPs identified in this study represent useful tools for marker-assisted selection.  相似文献   

4.
RFLP mapping of BaYMV resistance gene rym3 in barley (Hordeum vulgare)   总被引:1,自引:0,他引:1  
The rym3 (formerly designated ym3) gene conferring resistance to barley yellow mosaic virus (BaYMV) is effective against all strains of the virus but up to now has not been mapped to any chromosome. We performed a linkage analysis, using DNA extracted from individually harvested mature leaves of 153 F2 plants derived from a cross between BaYMV-resistant cv ’Ishuku Shirazu’ carrying rym3 and susceptible cv ’Ko A’. Additionally, the F3 lines derived from F2 plants were grown in the BaYMV-infested field and examined for their reaction to BaYMV. Our results indicated that rym3 is located on the short arm of chromosome 5H and flanked by RFLP markers MWG28and ABG705A at distances of 7.2 and 11.7 cM, respectively. The chromosomal configuration estimated by DNA markers around rym3 and the utilization of these molecular markers for pyramiding with the BaYMV resistance genes in barley breeding programs are discussed. Received: 24 August 1998 / Accepted: 30 January 1999<@head-com-p1a.lf>Communicated by F. Salamini  相似文献   

5.
Seven strains of Soybean mosaic virus (SMV) and three independent resistance loci (Rsv1, Rsv3, and Rsv4) have been identified in soybean. The objective of this research was to pyramid Rsv1, Rsv3, and Rsv4 for SMV resistance using molecular markers. J05 carrying Rsv1 and Rsv3 and V94-5152 carrying Rsv4 were used as the donor parents for gene pyramiding. A series of F2:3, F3:4, and F4:5 lines derived from J05 × V94-5152 were developed for selecting individuals carrying all three genes. Eight PCR-based markers linked to the three SMV resistance genes were used for marker-assisted selection. Two SSR markers (Sat_154 and Satt510) and one gene-specific marker (Rsv1-f/r) were used for selecting plants containing Rsv1; Satt560 and Satt063 for Rsv3; and Satt266, AI856415, and AI856415-g for Rsv4. Five F4:5 lines were homozygous for all eight marker alleles and presumably carry all three SMV resistance genes that would potentially provide multiple and durable resistance to SMV.  相似文献   

6.
PK23-2, a line of six-rowed barley (Hordeum vulgare L.) originating from Pakistan, has resistance to Japanese strains I and III of the barley yellow mosaic virus (BaYMV). To identify the source of resistance in this line, reciprocal crosses were made between the susceptible cultivar Daisen-gold and PK23-2. Genetic analyses in the F1 generation, F2 generation, and a doubled haploid population (DH45) derived from the F1 revealed that PK23-2 harbors one dominant and one recessive resistance genes. A linkage map was constructed using 61 lines of DH45 and 127 DNA markers; this map covered 1268.8 cM in 10 linkage groups. One QTL having a LOD score of 4.07 and explaining 26.8% of the phenotypic variance explained (PVE) for resistance to BaYMV was detected at DNA marker ABG070 on chromosome 3H. Another QTL having a LOD score of 3.53 and PVE of 27.2% was located at marker Bmag0490 on chromosome 4H. The resistance gene on chromosome 3H, here named Rym17, showed dominant inheritance, whereas the gene on chromosome 4H, here named rym18, showed recessive inheritance in F1 populations derived from crosses between several resistant lines of DH45 and Daisen-gold. The BaYMV recessive resistance genes rym1, rym3, and rym5, found in Japanese barley germplasm, were not allelic to rym18. These results revealed that PK23-2 harbors two previously unidentified resistance genes, Rym17 on 3H and rym18 on 4H; Rym17 is the first dominant BaYMV resistance gene to be identified in primary gene pool. These new genes, particularly dominant Rym17, represent a potentially valuable genetic resource against BaYMV disease.  相似文献   

7.
Marker assisted selection was employed to pyramid three bacterial blight resistance genes Xa21, xa13 and xa5 into high yielding susceptible rice cultivars ADT43 and ADT47. With the assistance of PCR markers, homozygous and heterozygous genotypes were identified in F2 generation of two crosses (ADT43 × IRBB60 and ADT47 × IRBB60) and goodness of fit was tested. Eighty nine plants from F3 generation of ADT43 × IRBB60 were also screened for resistance genes. The genotypes carrying resistance genes in different combinations were identified. The pyramided lines showed a wider spectrum and higher level of resistance against two Xoo isolates under field conditions.  相似文献   

8.
Soil-borne barley yellow mosaic virus disease – caused by a complex of at least three viruses, i.e. Barley mild mosaic virus (BaMMV), Barley yellow mosaic virus (BaYMV) and BaYMV-2 – is one of the most important diseases of winter barley in Europe. The two genes rym4, effective against BaMMV and BaYMV, and rym5, additionally effective against BaYMV-2, comprise a complex locus on chromosome 3HL, which is of special importance to European barley breeding. To provide the genetic basis for positional cloning of the Rym4/Rym5 locus, two high-resolution maps were constructed based on co-dominant flanking markers (MWG838/Y57c10 - MWG010/Bmac29). Mapping at a resolution of about 0.05% rec., rym4 has been located 1.07% recombination distal of marker MWG838 and 1.21% recombination proximal to marker MWG010. Based on a population size of 3,884 F2 plants (0.013% recombination) the interval harbouring rym5 was delimited to 1.49±0.14% recombination. By testing segmental recombinant inbred lines (RILs) for reaction to the different viruses at a resolution of 0.05% rec. (rym4) and 0.019% rec. (rym5), no segregation concerning the reaction to the different viruses could be observed. AFLP-based marker saturation for rym4, using 932 PstI+2/MseI+3 primer combinations only resulted in three markers with the closest one linked at 0.9% recombination to the gene. Two of these markers detected epialleles arising from the differential cytosine methylation of PstI sites. Regarding rym5, profiling of 1,200 RAPD primers (about 18,000 loci) and 2,048 EcoRI+3/MseI+3 AFLP primer combinations (about 205,000 loci) resulted in one RAPD marker and seven AFLP markers tightly linked to the resistance gene. Flanking markers with the closest linkage to rym5 (0.05% and 0.88% recombination) were converted into STS markers. These markers provide a starting point for chromosomal walking and may be exploited in marker-assisted selection for virus resistance based on rym5.  相似文献   

9.
Identification of RAPD markers for 11 Hessian fly resistance genes in wheat   总被引:7,自引:0,他引:7  
 The pyramiding of genes that confer race- or biotype-specific resistance has become increasingly attractive as a breeding strategy now that DNA-based marker-assisted selection is feasible. Our objective here was to identify DNA markers closely linked to genes in wheat (Triticum aestivum L.) that condition resistance to Hessian fly [Mayetiola destructor (Say)]. We used a set of near-isogenic wheat lines, each carrying a resistance gene at 1 of 11 loci (H3, H5, H6, H9, H10, H11, H12, H13, H14, H16 or H17) and developed by backcrossing to the Hessian fly-susceptible wheat cultivar ‘Newton’. Using genomic DNA of these 11 lines and ‘Newton’, we have identified 18 randomly amplified polymorphic DNA (RAPD) markers linked to the 11 resistance genes. Seven of these markers were identified by denaturing gradient gel electrophoresis and the others by agarose gel electrophoresis. We confirmed linkage to the Hessian fly resistance loci by cosegregation analysis in F2 populations of 50–120 plants for each different gene. Several of the DNA markers were used to determine the presence/absence of specific Hessian fly resistance genes in resistant wheat lines that have 1 or possibly multiple genes for resistance. The use of RAPD markers presents a valuable strategy for selection of single and combined Hessian fly resistance genes in wheat improvement. Received: 20 March 1996 / Accepted: 6 September 1996  相似文献   

10.
Selecting superior genotypes is facilitated by marker-assisted selection (MAS), which is particularly suitable for transferring disease resistance alleles because it nullifies environmental effects and allows selection of resistant individuals in the absence of the pathogen or race, enabling preventive breeding. Molecular markers linked to two major genes (SH3 and SH?), conferring resistance to coffee rust, and those linked to the Ck-1 gene, conferring resistance to coffee berry disease (CBD), have previously been identified. These markers were validated and used in a progeny of crosses between Indian selections with Coffea arabica cultivars. Eleven resistant individuals homozygous for SH3 were identified by MAS. Of these, seven carry SH? from Híbrido de Timor and the gene introduced from Coffea liberica (SH3). SH? was characterized as derived from Coffea canephora. Thus, it was possible to identify C. arabica genotypes carrying important genes for rust resistance introgressed from other coffee species. MAS also allowed identification of sources of CBD resistance for use in preventive breeding for resistance to this serious disease. Using two validated molecular markers, two coffee plants carrying Ck-1 were identified: the UFV 328-60 genotype (F2) was resistant and homozygous based on both molecular markers but exhibited no markers related to SH3 and SH?, and the UFV 317-12 genotype (F1) was resistant and homozygous but resistant and heterozygous based on CBD-Sat207 and CBD-Sat235, respectively. Along with possessing Ck-1, the latter carries SH?. Overall, plants carrying different genes for resistance to rust and CBD were identified. These plants are important sources for gene pyramiding in breeding programs aimed at multiple and durable resistance.  相似文献   

11.
Soil-borne barley yellow mosaic virus disease, caused by different strains of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), is one of the most important diseases of winter barley (Hordeum vulgare L.) in Europe and East Asia. The recessive resistance gene rym11 located in the centromeric region of chromosome 4HL is effective against all so far known strains of BaMMV and BaYMV in Germany. In order to isolate this gene, a high-resolution mapping population (10,204 meiotic events) has been constructed. F2 plants were screened with co-dominant flanking markers and segmental recombinant inbred lines (RILs) were tested for resistance to BaMMV under growth chamber and field conditions. Tightly linked markers were developed by exploiting (1) publicly available barley EST sequences, (2) employing barley synteny to rice, Brachypodium distachyon and sorghum and (3) using next-generation sequencing data of barley. Using this approach, the genetic interval was efficiently narrowed down from the initial 10.72 % recombination to 0.074 % recombination. A marker co-segregating with rym11 was developed providing the basis for gene isolation and efficient marker-assisted selection.  相似文献   

12.
Magnaporthe grisea, the blast fungus is one of the main pathological threats to finger millet crop worldwide. A systematic search for the blast resistance gene analogs was carried out, using functional molecular markers. Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encodes nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from Eleusine coracana. Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from resistant genotypes of finger millet using PCR based approach with primers designed from conserved regions of NBS domain. Attempts were made to identify molecular markers linked to the resistance gene and to differentiate the resistant bulk from the susceptible bulk. A total of 9 NBS-LRR and 11 EST-SSR markers generated 75.6 and 73.5% polymorphism respectively amongst 73 finger millet genotypes. NBS-5, NBS-9, NBS-3 and EST-SSR-04 markers showed a clear polymorphism which differentiated resistant genotypes from susceptible genotypes. By comparing the banding pattern of different resistant and susceptible genotypes, five DNA amplifications of NBS and EST-SSR primers (NBS-05504, NBS-09711, NBS-07688, NBS-03509 and EST-SSR-04241) were identified as markers for the blast resistance in resistant genotypes. Principal coordinate plot and UPGMA analysis formed similar groups of the genotypes and placed most of the resistant genotypes together showing a high level of genetic relatedness and the susceptible genotypes were placed in different groups on the basis of differential disease score. Our results provided a clue for the cloning of finger millet blast resistance gene analogs which not only facilitate the process of plant breeding but also molecular characterization of blast resistance gene analogs from Eleusine coracana.  相似文献   

13.
Bacterial blight (BB) is a serious disease of rice in India. We have used molecular marker-assisted selection in a backcross breeding program to introgress three genes (Xa21, xa13, and xa5) for BB resistance into Triguna, a mid-early duration, high yielding rice variety that is susceptible to BB. At each generation in the backcross program, molecular markers were used to select plants possessing these resistance genes and to select plants that have maximum contribution from the Triguna genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. Plants containing the two-gene combination, Xa21 and xa13, were found to exhibit excellent resistance against BB. Single plant selections for superior agronomic characteristics were performed on the progeny of these plants, from BC3F3 generation onwards. The selected plants were subjected to yield trials at the BC3F8 generation and were found to have a significant yield advantage over Triguna. The newly developed lines are being entered into national multi-location field trials. This work represents a successful example of the application of molecular marker-assisted selection for BB resistance breeding in rice.  相似文献   

14.
Rusts and barley yellow dwarf virus (BYDV) are among the main diseases affecting wheat production world wide for which wild relatives have been the source of a number of translocations carrying resistance genes. Nevertheless, along with desirable traits, alien translocations often carry deleterious genes. We have generated recombinants in a bread wheat background between two alien translocations: TC5, ex-Thinopyrum (Th) intermedium, carrying BYDV resistance gene Bdv2; and T4m, ex-Th. ponticum, carrying rust resistance genes Lr19 and Sr25. Because both these translocations are on the wheat chromosome arm 7DL, homoeologous recombination was attempted in the double hemizygote (TC5/T4m) in a background homozygous for the ph1b mutation. The identification of recombinants was facilitated by the use of newly developed molecular markers for each of the alien genomes represented in the two translocations and by studying derived F2, F3 and doubled haploid populations. The occurrence of recombination was confirmed with molecular markers and bioassays on families of testcrosses between putative recombinants and bread wheat, and in F2 populations derived from the testcrosses. As a consequence it has been possible to derive a genetic map of markers and resistance genes on these previously fixed alien linkage blocks. We have obtained fertile progeny carrying new tri-genomic recombinant chromosomes. Furthermore we have demonstrated that some of the recombinants carried resistance genes Lr19 and Bdv2 yet lacked the self-elimination trait associated with shortened T4 segments. We have also shown that the recombinant translocations are fixed and stable once removed from the influence of the ph1b. The molecular markers developed in this study will facilitate selection of individuals carrying recombinant Th. intermediumTh. ponticum translocations (Pontin series) in breeding programs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Three genes, er1, er2 and Er3, conferring resistance to powdery mildew (Erysiphe pisi) in pea have been described so far. Because single gene-controlled resistance tends to be overcome by evolution of pathogen virulence, accumulation of several resistance genes into a single cultivar should enhance the durability of the resistance. Molecular markers linked to genes controlling resistance to E. pisi may facilitate gene pyramiding in pea breeding programs. Molecular markers linked to er1 and er2 are available. In the present study, molecular markers linked to Er3 have been obtained. A segregating F2 population derived from the cross between a breeding line carrying the Er3 gene, and the susceptible cultivar ‘Messire’ was developed and genotyped. Bulk Segregant Analysis (BSA) was used to identify Random Amplified Polymorphic DNA (RAPD) markers linked to Er3. Four RAPD markers linked in coupling phase (OPW04_637, OPC04_640, OPF14_1103, and OPAH06_539) and two in repulsion phase (OPAB01_874 and OPAG05_1240), were identified. Two of these, flanking Er3, were converted to Sequence Characterized Amplified Region (SCAR) markers. The SCAR marker SCW4637 co-segregated with the resistant gene, allowing the detection of all the resistant individuals. The SCAR marker SCAB1874, in repulsion phase with Er3, was located at 2.8 cM from the gene and, in combination with SCW4637, was capable to distinguish homozygous resistant individuals from heterozygous with a high efficiency. In addition, the validation for polymorphism in different genetic backgrounds and advanced breeding material confirmed the utility of both markers in marker-assisted selection.  相似文献   

16.
Monogenic lines, which carried 23 genes for blast resistance were tested and used donors to transfer resistance genes by crossing method. The results under blast nursery revealed that 9 genes from 23 genes were susceptible to highly susceptible under the three locations (Sakha, Gemmeza, and Zarzoura in Egypt); Pia, Pik, Pik-p, Piz-t, Pita, Pi b, Pi, Pi 19 and Pi 20. While, the genes Pii, Pik-s, Pik-h, Pi z, Piz-5, Pi sh, Pi 3, Pi 1, Pi 5, Pi 7, Pi 9, Pi 12, Pikm and Pita-2 were highly resistant at the same locations. Clustering analysis confirmed the results, which divided into two groups; the first one included all the susceptible genes, while the second one included the resistance genes. In the greenhouse test, the reaction pattern of five races produced 100% resistance under artificial inoculation with eight genes showing complete resistance to all isolates. The completely resistant genes: Pii, Pik-s, Piz, Piz-5 (=bi2) (t), Pita (=Pi4) (t), Pita, Pi b and Pi1 as well as clustering analysis confirmed the results. In the F1 crosses, the results showed all the 25 crosses were resistant for leaf blast disease under field conditions. While, the results in F2 population showed seven crosses with segregation ratio of 15 (R):1 (S), two cross gave segregated ratio of 3 R:1 S and one gave 13:3. For the identi- fication of blast resistance genes in the parental lines, the marker K3959, linked to Pik-s gene and the variety IRBLKS-F5 carry this gene, which was from the monogenic line. The results showed that four genotypes; Sakha 105, Sakha 103, Sakha 106 and IRBLKS-F5 were carrying Pik-s gene, while was absent in the Sakha 101, Sakha 104, IRBL5-M, IRBL9-W, IRBLTACP1 and IRBL9-W(R) genotypes. As for Pi 5 gene, the results showed that it was present in Sakha 103 and Sakha 104 varieties and absent in the rest of the genotypes. In addition, Pita-Pita- 2 gene was found in the three Egyptian genotypes (Sakha 105, Sakha 101 and Sakha 104) plus IRBLTACP1 monogenetic. In F2 generation, six populations were used to study the inheritance of blast resistance and specific primers to confirm the ratio and identify the resistance genes. However, the ratios in molecular markers were the same of the ratio under field evaluation in the most population studies. These findings would facilitate in breeding programs for gene pyramiding and gene accumulation to produce durable resistance for blast using those genotypes.  相似文献   

17.
The genomic clone RG64, which is tightly linked to the blast resistance gene Pi-2(t) in rice, provides means to perform marker-aided selection in a rice breeding program. The objective of this study was to investigate the possibility of generating a polymerase chain reaction (PCR)-based polymorphic marker that can distinguish the blast resistant gene, Pi-2(t), and susceptible genotypes within cultivated rice. RG64 was sequenced, and the sequence data was used to design pairs of specific primers for (PCR) amplification of genomic DNA from rice varieties differing in their blast disease responsiveness. The amplified products, known as sequenced-tagged-sites (STSs), were not polymorphic between the three varieties examined. However, cleavage of the amplified products with the restriction enzyme HaeIII generated a polymorphic fragment, known as specific amplicon polymorphism (SAP), between the resistant and the susceptible genotypes. To examine the power of the identified SAP marker in predicting the genotype of the Pi-2 (t) locus, we determined the genotypes of the F2 individuals at this locus by performing progeny testing for the disease response in the F3 generation. The results indicated an accuracy of more than 95% in identifying the resistant plants, which was similar to that using RG64 as the hybridization probe. The identification of the resistant homozygous plants increased to 100% when the markers flanking the genes were considered simultaneously. These results demonstrate the utility of SAP markers as simple and yet reliable landmarks for use in marker-assisted selection and breeding within cultivated rice.  相似文献   

18.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Growing resistant cultivars is the most effective approach to control the disease, but only a few genes confer effective all-stage resistance against the current populations of the pathogen worldwide. It is urgent to identify new genes for diversifying sources of resistance genes and for pyramiding genes for different types of resistance in order to achieve high levels of durable resistance for sustainable control of stripe rust. The common spring wheat genotype ‘PI 181434’, originally from Afghanistan, was resistant in all greenhouse and field tests in our previous studies. To identify the resistance gene(s) PI 181434 was crossed with susceptible genotype ‘Avocet Susceptible’. Adult plants of 103 F2 progeny were tested in the field under the natural infection of P. striiformis f. sp. tritici. Seedlings of the parents, F2 and F3 were tested with races PST-100 and PST-127 of the pathogen under controlled greenhouse conditions. The genetic study showed that PI 181434 has a single dominant gene conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the gene. A linkage map of 8 RGAP and 2 SSR markers was constructed for the gene using data from the 103 F2 plants and their derived F3 lines tested in the greenhouse. Amplification of the complete set of nulli-tetrasomic lines and selected ditelosomic lines of Chinese Spring with an RGAP marker and the two SSR markers mapped the gene on the long arm of chromosome 3D. Because it is the first gene for stripe rust resistance mapped on chromosome 3DL and different from all previously named Yr genes, the gene in PI 181434 was designated Yr45. Polymorphism rates of the two closest flanking markers, Xwgp115 and Xwgp118, in 45 wheat genotypes were 73.3 and 82.2%, respectively. Single nucleotide polymorphisms (SNPs) were identified in the eight wheat genotypes sharing both flanking markers. The RGAP markers and potential SNP markers should be useful in incorporating the gene into wheat cultivars and in pyramiding it with other genes for durable resistance.  相似文献   

19.
Marker assisted selection of bacterial blight resistance genes in rice   总被引:4,自引:0,他引:4  
Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae is one of the most important diseases affecting rice production in Asia. We were interested in surveying rice genotypes that are popularly used in the Indian breeding program for conferring resistance to bacterial blight, using 11 STMS and 6 STS markers. The basis of selection of these DNA markers was their close linkage to xa5, xa13, and Xa21 genes and their positions on the rice genetic map relative to bacterial blight resistance genes. Eight lines were found to contain the xa5 gene while two lines contained Xa21 gene and none of the lines contained the xa13 gene with the exception of its near-isogenic line. Using the polymorphic markers obtained in the initial survey, marker-assisted selection was performed in the F3 population of a cross between IR-64 and IET-14444 to detect lines containing multiple resistance genes. Of the 59 progeny lines analyzed, eight lines contained both the resistance genes, xa5 and Xa4.  相似文献   

20.
A leaf rust resistance gene Lr19 on the chromosome 7DL of wheat derived from Agropyron elongatum was tagged with random amplified polymorphic DNA (RAPD) and microsatellite markers. The F2 population of 340 plants derived from a cross between the leaf rust resistant near-isogenic line (NIL) of Thatcher (Tc + Lr19) and leaf rust susceptible line Agra Local that segregated for dominant monogenic leaf rust resistance was utilized for generating the mapping population. The molecular markers were mapped in the F2 derived F3 homozygous population of 140 seedlings. Sixteen RAPD markers were identified as linked to the alien gene Lr19 among which eight were in a coupling phase linkage. Twelve RAPD markers co-segregated with Lr19 locus. Nine microsatellite markers located on the long arm of chromosome 7D were also mapped as linked to the gene Lr19, including 7 markers which co-segregated with Lr19 locus, thus generating a saturated region carrying 25 molecular markers linked to the gene Lr19 within 10.2 ± 0.062 cM on either side of the locus. Two RAPD markers S265512 and S253737 which flanked the locus Lr19 were converted to sequence characterized amplified region markers SCS265512 and SCS253736, respectively. The marker SCS265512 was linked with Lr19 in a coupling phase and the marker SCS253736 was linked in a repulsion phase, which when used together mimicked one co-dominant marker capable of distinguishing the heterozygous resistant seedlings from the homozygous resistant. The molecular markers were validated on NILs mostly in Thatcher background isogenic for 44 different Lr genes belonging to both native and alien origin. The validation for polymorphism in common leaf rust susceptible cultivars also confirmed the utility of these tightly linked markers to the gene Lr19 in marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号