首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An in vitro preparation of hair cells from the bullfrog sacculus produces a transepithelial microphonic potential in response to well-defined mechanical stimuli. If corrected for the electrical time constant of the epithelium, the response follows a fast stimulus with a 40-microsecond delay at 22 degree C. The short latency and its modest temperature dependence limit possible models for transduction by hair cells.  相似文献   

2.
The organization of multicellular organisms depends on cell-cell communication. The signal molecules are often soluble components in the extracellular fluid, but also include odors and light. A large array of surface receptors is involved in the detection of these signals. Signals are then transduced across the plasma membrane so that enzymes at the inner face of the membrane are activated, producing second messengers, which by a complex network of interactions activate target proteins or genes. Vertebrate cells have been used to study hormone and neurotransmitter action, vision, the regulation of cell growth and differentiation. Sensory transduction in lower eukaryotes is predominantly used for other functions, notably cell attraction for mating and food seeking. By comparing sensory transduction in lower and higher eukaryotes general principles may be recognized that are found in all organisms and deviations that are present in specialised systems. This may also help to understand the differences between cell types within one organism and the importance of a particular pathway that may or may not be general. In a practical sense, microorganisms have the advantage of their easy genetic manipulation, which is especially advantageous for the identification of the function of large families of signal transducing components.  相似文献   

3.
Light activation of guanylate cyclase at different calcium concentrations was studied in the rod outer segments of the toad retina. The enzyme becomes sensitive to calcium ions after a flash of light, showing an enhancement of its activity when Ca2+ concentration is lowered from 10−4 M to 10−8 M. A possible pathway of guanylate cyclase activation by light was also investigated by means of the antibody 4A to transducin. When added in excess to transducin, the antibody inhibits light activation of phosphodiesterase as well as of cyclase, suggesting a possible coupling of the two enzymes.  相似文献   

4.
Titin (also known as connectin) is a muscle-specific giant protein found inside the sarcomere, spanning from the Z-line to the M-line. The I-band segment of titin is considered to function as a molecular spring that develops tension when sarcomeres are stretched (passive tension). Recent studies on skeletal muscle indicate that it is not the entire I-band segment of titin that behaves as a spring; some sections are inelastic and do not take part in the development of passive tension. To better understand the mechanism of passive tension development in the heart, where passive tension plays an essential role in the pumping function, we investigated titin's elastic segment in cardiac myocytes using structural and mechanical techniques. Single cardiac myocytes were stretched by various amounts and then immunolabeled and processed for electron microscopy in the stretched state. Monoclonal antibodies that recognize different titin epitopes were used, and the locations of the titin epitopes in the sarcomere were studied as a function of sarcomere length. We found that only a small region of the I-band segment of titin is elastic; its contour length is estimated at approximately 75 nm, which is only approximately 40% of the total I-band segment of titin. Passive tension measurements indicated that the fundamental determinant of how much passive tension the heart develops is the strain of titin's elastic segment. Furthermore, we found evidence that in sarcomeres that are slack (length, approximately 1.85 microns) the elastic titin segment is highly folded on top of itself. Based on the data, we propose a two-stage mechanism of passive tension development in the heart, in which, between sarcomere lengths of approximately 1.85 microns and approximately 2.0 microns, titin's elastic segment straightens and, at lengths longer than approximately 2.0 microns, the molecular domains that make up titin's elastic segment unravel. Sarcomere shortening to lengths below slack (approximately 1.85 microns) also results in straightening of the elastic titin segment, giving rise to a force that opposes shortening and that tends to bring sarcomeres back to their slack length.  相似文献   

5.
Hair cells bear an apical bundle of stereocilia arranged in serried rows. Deflection of the bundle controls the opening and closing of mechanoelectrical transduction channels, thereby altering the conductance across the apical plasma membrane. Two locations for these channels have been proposed in the bundle, either near the bases of the stereocilia or towards their tips. One hypothesis that is consistent with the latter possibility suggests that fine extracellular filaments, which run between the tips of the shorter stereocilia and the sides of the taller stereocilia behind, operate the channels. Determining the precise position of the channels is essential to test this hypothesis. We have therefore attempted to localize them immunocytochemically. Because hair-cell transduction is amiloride sensitive, the channels may have an amiloride-binding site associated with them. We have therefore used a polyclonal antibody raised against another amiloride-sensitive ion channel to hunt for them. This antibody recognizes a 62-64 kDa band in immunoblots of cochlear tissue, and produces discrete labelling in the hair bundle. This is most concentrated just below the tips of the shorter stereocilia, coinciding with a region of specialization in the closely apposed membranes of the short and tall stereocilia but not with either end of the tip link.  相似文献   

6.
Tunable laser resonance Raman spectroscopy has been applied to probe (in vivo) the role of rhodopsin in transducing light energy into the chemical necessary to generate a neural response. These in vivo experiments have suggested that the Schiff base linkage through which retinal is attached to opsin in rhodopsin is protonated. Furthermore, it appears that light eventually stimulates the deprotonation of the Schiff base linkage between the Meta I and Meta II steps in the intermediate sequence which is the result of light interacting with rhodopsin. Our data suggest that this deprotonation of the Schiff base occurs on the same time scale as overall proton release and uptake by the rhodopsin molecule. It is interesting to note that this series of protonations and deprotonations also occurs within the same time scale as the neural response generation in vertebrates and the generation of a proton gradient by bacteriorhodopsin, which is used by the bacterium, Halobacterium halobium, for ATP synthesis. If these data are analyzed within the context of the in vivo resonance Raman experiments (which seem to indicate that proton release is stimulated in the disc membrane during transduction) then there is a strong suggestion that the proton will assume an important role in any working hypothesis of visual transduction. In essence it appears that protons along with ATP and calcium ions must all be essential elements in the transduction process.  相似文献   

7.
8.
Vestibular hair cells (VHCs) and cochlear outer hair cells (OHCs) of neonatal mice were stimulated by a fluid jet directed at their stereociliary bundles. Relations between the force exerted by the jet, bundle displacement, and the resulting transducer current were studied. The mean maximum transducer conductance in VHCs (2.6 nS) was about half that of the OHCs (5.5 nS), with the largest recorded values being 4.1 nS and 9.2 nS, respectively. In some OHCs activity of a single, 112 pS transducer channel was observed, allowing an estimate of the maximum number of channels: up to 36 in VHCs and 82 in OHCs, corresponding to about one transducer channel per tip link. The VHC bundles required about 330 nm of tip displacement to activate 90% of the maximum transducer conductance, compared to 150 nm for the OHC bundles. This corresponded to 2 deg of rotation about their pivots for both, due to the greater length of the VHC bundles. The VHC bundles'' translational stiffness was one-seventh of that of the OHCs. Conversion to rotational stiffness almost abolished this difference. Rotation of the hair bundle rather than translation determines the gating of the transducer channels, independent of bundle height or origin of the cells.  相似文献   

9.
10.
11.
Light activation of guanylate cyclase at different calcium concentrations was studied in the rod outer segments of the toad retina. The enzyme becomes sensitive to calcium ions after a flash of light, showing an enhancement of its activity when Ca2+ concentration is lowered from 10(-4) M to 10(-8) M. A possible pathway of guanylate cyclase activation by light was also investigated by means of the antibody 4A to transducin. When added in excess to transducin, the antibody inhibits light activation of phosphodiesterase as well as of cyclase, suggesting a possible coupling of the two enzymes.  相似文献   

12.
A flash of light initiates a cascade of biochemical reactions inside vertebrate photoreceptor cells, culminating in hydrolysis of intracellular cyclic GMP and hyperpolarization of the cell. The cell recovers by shutting down this cascade and resynthesizing cGMP. Many of the reactions responsible for the excitation and recovery phases of the photoresponse have been identified. Here I review some characteristics of the proteins that participate in these reactions.  相似文献   

13.
14.
The elusive transduction channel is the key player in mechanical transduction by the sensory hair cells of the inner ear. Multiple factors have thwarted molecular identification of this channel, including the lack of a definitive pharmacological signature, the paucity of hair cells, and the uniqueness of their transduction mechanism. At present, we are forced to speculate as to the transduction channel's identity; functional characteristics suggest, however, that it may well belong to transient receptor potential superfamily of ion channels.  相似文献   

15.
The sensitivity of our hearing is enhanced by an active process that both amplifies and tunes the movements of the ear's sensory receptors, the hair cells. In a quiet environment, the active process can even evoke spontaneous emission of sounds from an ear. Recent research indicates that, at least in non-mammalian tetrapods, the active process results from the interaction of negative stiffness in the mechanosensitive hair bundles with two motor processes, one due to myosin-based adaptation and the other to Ca2+ -dependent reclosure of transduction channels. These three processes together explain many of the complex phenomena characteristic of the hearing process.  相似文献   

16.
After opening in response to mechanical stimuli, hair cell transduction channels adapt with fast and slow mechanisms that each depend on Ca(2+). We demonstrate here that transduction and adaptation require phosphatidylinositol 4,5-bisphosphate (PIP(2)) for normal kinetics. PIP(2) has a striking distribution in hair cells, being excluded from the basal region of hair bundles and apical surfaces of frog saccular hair cells. Localization of a phosphatidylinositol lipid phosphatase, Ptprq, to these PIP(2)-free domains suggests that Ptprq maintains low PIP(2) levels there. Depletion of PIP(2) by inhibition of phosphatidylinositol 4-kinase or sequestration by aminoglycosides reduces the rates of fast and slow adaptation. PIP(2) and other anionic phospholipids bind directly to the IQ domains of myosin-1c, the motor that mediates slow adaptation, permitting a strong interaction with membranes and likely regulating the motor's activity. PIP(2) depletion also causes a loss in transduction current. PIP(2) therefore plays an essential role in hair cell adaptation and transduction.  相似文献   

17.

Background   

Whole genome duplication (WGD) is a special case of gene duplication, observed rarely in animals, whereby all genes duplicate simultaneously through polyploidisation. Two rounds of WGD (2R-WGD) occurred at the base of vertebrates, giving rise to an enormous wave of genetic novelty, but a systematic analysis of functional consequences of this event has not yet been performed.  相似文献   

18.
In plants, unlike animals, signal transduction studies are in their infancy. While intracellular Ca2+ appears to have second messenger functions, attempts to show that protein kinases, inositol phosphates and cyclic AMP are involved in signal transduction in plants have run into considerable difficulty.  相似文献   

19.
Signal transduction by auditory and vestibular hair cells involves an impressive ensemble of finely tuned control mechanisms, strictly dependent on the local intracellular Ca(2+) concentration ([Ca(2+)](i)). The study of Ca(2+) dynamics in hair cells typically combines Ca(2+)-sensitive fluorescent indicators (dyes), patch clamp and optical microscopy to produce images of the patterns of fluorescence of a Ca(2+) indicator following various stimulation protocols. Here we describe a novel method that combines electrophysiological recordings, fluorescence imaging and numerical simulations to effectively deconvolve Ca(2+) signals within cytoplasmic microdomains that would otherwise remain inaccessible to direct observation. The method relies on the comparison of experimental data with virtual signals derived from a Monte Carlo reaction-diffusion model based on a realistic reconstruction of the relevant cell boundaries in three dimensions. The model comprises Ca(2+) entry at individual presynaptic active zones followed by diffusion, buffering, extrusion and release of Ca(2+). Our results indicate that changes of the hair cell [Ca(2+)](i) during synaptic transmission are primarily controlled by the Ca(2+) endogenous buffers both at short (<1mu) and at long (tens of microns) distances from the active zones. We provide quantitative estimates of concentration and kinetics of the hair cell endogenous Ca(2+) buffers and Ca(2+)-ATPases. We finally show that experimental fluorescence data collected during Ca(2+) influx are not interpreted correctly if the [Ca(2+)](i) is estimated by assuming that Ca(2+) equilibrates instantly with its reactants. In our opinion, this approach is of potentially general interest as it can be easily adapted to the study of Ca(2+) dynamics in diverse biological systems.  相似文献   

20.
Burns ME  Arshavsky VY 《Neuron》2005,48(3):387-401
For over 30 years, photoreceptors have been an outstanding model system for elucidating basic principles in sensory transduction and G protein signaling. Recently, photoreceptors have become an equally attractive model for studying many facets of neuronal cell biology. The primary goal of this review is to illustrate this rapidly growing trend. We will highlight the areas of active research in photoreceptor biology that reveal how different specialized compartments of the cell cooperate in fulfilling its overall function: converting photon absorption into changes in neurotransmitter release. The same trend brings us closer to understanding how defects in photoreceptor signaling can lead to cell death and retinal degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号