首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction in infant birth weight and increased frequency of preeclampsia (PE) in high-altitude residents have been attributed to greater placental hypoxia, smaller uterine artery (UA) diameter, and lower UA blood flow (Q(UA)). This cross-sectional case-control study determined UA, common iliac (CI), and external iliac (EI) arterial blood flow in Andeans residing at 3,600-4,100 m, who were either nonpregnant (NP, n = 23), or experiencing normotensive pregnancies (NORM; n = 155), preeclampsia (PE, n = 20), or gestational hypertension (GH, n = 12). Pregnancy enlarged UA diameter to ~0.62 cm in all groups, but indices of end-arteriolar vascular resistance were higher in PE or GH than in NORM. Q(UA) was lower in early-onset (≤34 wk) PE or GH than in NORM, but was normal in late-onset (>34 wk) illness. Left Q(UA) was consistently greater than right in NORM, but the pattern reversed in PE. Although Q(CI) and Q(EI) were higher in PE and GH than NORM, the fraction of Q(CI) distributed to the UA was reduced 2- to 3-fold. Women with early-onset PE delivered preterm, and 43% had stillborn small for gestational age (SGA) babies. Those with GH and late-onset PE delivered at term but had higher frequencies of SGA babies (GH=50%, PE=46% vs. NORM=15%, both P < 0.01). Birth weight was strongly associated with reduced Q(UA) (R(2) = 0.80, P < 0.01), as were disease severity and adverse fetal outcomes. We concluded that high end-arteriolar resistance, not smaller UA diameter, limited Q(UA) and restricted fetal growth in PE and GH. These are, to our knowledge, the first quantitative measurements of Q(UA) and pelvic blood flow in early- vs. late-onset PE in high-altitude residents.  相似文献   

2.
3.
Immediately on arrival of man at 3,600 m altitude there was a tendency towards hypercoagulation with increase in the platelet count, factor X, factor XII, thrombotest activity and thrombin clotting time with compensatory increase in fibrinolysis and reduction in factor VIII. During continuous stay there was a regression of the hypercoagulation state with reduction in platelet count, platelet factor 3, clot retraction, factor X, factor XII, thrombotest activity and persistence of increased fibrinolytic activity. The main difference in the hypercoagulation state in high-altitude pulmonary oedema and the corresponding highaltitude controls was the absence of a compensatory increase in fibrinolysis and increase in factor VIII. The main difference in the hypercoagulation state in highaltitude pulmonary hypertension and the corresponding high-altitude controls was an increase in platelet adhesiveness, platelet factor 3, factor V and factor VIII. The outstanding difference between high-altitude pulmonary oedema and highaltitude pulmonary hypertension was in the fibrinolytic activity and thrombin clotting time which were reduced in pulmonary oedema but were increased in pulmonary hypertension.
Zusammenfassung Unmittelbar nach der Ankunft von Männern in 3.600 m Höhe zeigte sich eine Hyperkoagulation mit Anstieg der Plättchenzahl, Faktor X und Faktor XII, Thrombotest-Aktivität und Thrombin-Gerinnungszeit mit kompensatorischem Anstieg der Fibrinolyse und Verminderung von Faktor VIII. Bei längerem Aufenthalt ging der Hyperkoagulationszustand zurück mit verminderter Plättchenzahl, Plättchenfaktor 3, Thrombusretraktion, Faktor X, Faktor XII, Thrombotest-Aktivität und Verbleiben oder Anstieg der fibrinolytischen Aktivität. Der Hauptunterschied in der Hyperkoagulationsphase von Personen mit Lungenoedem und Gesunden in der Höhe war das Fehlen eines kompensatorischen Anstieges der Fibrinolyse und Faktor VIII. Der Hauptunterschied in der Hyperkoagulationsphase von Personen mit pulmonalem Hochdruck und Gesunden in der Höhe war ein Anstieg der Klebrigkeit der Plättchen, Plättchenfaktor 3, Faktor V und Faktor VIII. Die fibrinolytische Aktivität und die Thrombin-Gerinnungszeit waren bei Lungenoedem vermindert und bei pulmonalem Hochdruck erhöht.

Resume A l'arrivée à 3.600 m d'altitude, on constate chez des sujets d'expérience une hypercoagulation accompagnée d'une hausse du nombre de plaquettes, du facteur X et du facteur XII, de l'activité du thrombotest et du temps de réaction de la thrombine. En compensation, on note une hausse de la fibrinolyse et une baisse du facteur VIII. Un séjour prolongé en altitude a pour conséquence une normalisation des réactions sanguines. Dans la phase d'hypercoagulation, la principale différence observée entre les personnes souffrant d'oedème pulmonaire et les personnes en bonne santé a été que, chez les premières, on n'a pas constaté de hausse compensatoire de la fibrinolyse ni de baisse du facteur VIII. Dans cette même phase, les personnes souffrant d'hypertension pulmonaires se distinguent des gens en bonne santé par le fait que les plaquettes collent entre elles et par une augmentation du facteur de plaques 3, du facteur V et du facteur VIII. L'activité fibrinolytique et le temps de coagulation de la thrombine sont diminués par l'oedème et augmentés par l'hypertension pulmonaire.
  相似文献   

4.
It is unclear whether dogs develop pulmonary hypertension (PH) at high altitude. Beagles from sea level were exposed to an altitude of 3,100 m (PB 525 Torr) for 12-19 mo and compared with age-matched controls remaining at low altitude of 130 m (PB 750 Torr). In beagles taken to high altitude as adults, pulmonary arterial pressures (PAP) at 3,100 m were 21.6 +/- 2.6 vs. 13.2 +/- 1.2 Torr in controls. Likewise, in beagles taken to 3,100 m as puppies 2.5 mo old, PAP was 23.2 +/- 2.1 vs. 13.8 +/- 0.4 Torr in controls. This PH reflected a doubling of pulmonary vascular resistance and showed no progression with time at altitude. Pulmonary vascular reactivity to acute hypoxia was also enhanced at 3,100 m. Inhibition of prostaglandin synthesis did not attenuate the PH or the enhanced reactivity. Once established, the PH was only partially reversed by acute relief of chronic hypoxia, but reversal was virtually complete after return to low altitude. Hence, beagles do develop PH at 3,100 m of a severity comparable to that observed in humans at the same or even higher altitudes.  相似文献   

5.
6.

Background

Due to increasing numbers of people with diabetes taking part in extreme sports (e.g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior studies reported bias in blood glucose measurements using different BGMs at high altitude. We hypothesized that glucose-oxidase based BGMs are more influenced by the lower atmospheric oxygen pressure at altitude than glucose dehydrogenase based BGMs.

Methodology/Principal Findings

Glucose measurements at simulated altitude of nine BGMs (six glucose dehydrogenase and three glucose oxidase BGMs) were compared to glucose measurement on a similar BGM at sea level and to a laboratory glucose reference method. Venous blood samples of four different glucose levels were used. Moreover, two glucose oxidase and two glucose dehydrogenase based BGMs were evaluated at different altitudes on Mount Kilimanjaro. Accuracy criteria were set at a bias <15% from reference glucose (when >6.5 mmol/L) and <1 mmol/L from reference glucose (when <6.5 mmol/L). No significant difference was observed between measurements at simulated altitude and sea level for either glucose oxidase based BGMs or glucose dehydrogenase based BGMs as a group phenomenon. Two GDH based BGMs did not meet set performance criteria. Most BGMs are generally overestimating true glucose concentration at high altitude.

Conclusion

At simulated high altitude all tested BGMs, including glucose oxidase based BGMs, did not show influence of low atmospheric oxygen pressure. All BGMs, except for two GDH based BGMs, performed within predefined criteria. At true high altitude one GDH based BGM had best precision and accuracy.  相似文献   

7.
An exaggerated increase in pulmonary arterial pressure is the hallmark of high-altitude pulmonary edema (HAPE) and is associated with endothelial dysfunction of the pulmonary vasculature. Whether the myocardial circulation is affected as well is not known. The aim of this study was, therefore, to investigate whether myocardial blood flow reserve (MBFr) is altered in mountaineers developing HAPE. Healthy mountaineers taking part in a trial of prophylactic treatment of HAPE were examined at low (490 m) and high altitude (4,559 m). MBFr was derived from low mechanical index contrast echocardiography, performed at rest and during submaximal exercise. Among 24 subjects evaluated for MBFr, 9 were HAPE-susceptible individuals on prophylactic treatment with dexamethasone or tadalafil, 6 were HAPE-susceptible individuals on placebo, and 9 persons without HAPE susceptibility served as controls. At low altitude, MBFr did not differ between groups. At high altitude, MBFr increased significantly in HAPE-susceptible individuals on treatment (from 2.2 +/- 0.8 at low to 2.9 +/- 1.0 at high altitude, P = 0.04) and in control persons (from 1.9 +/- 0.8 to 2.8 +/- 1.0, P = 0.02), but not in HAPE-susceptible individuals on placebo (2.5 +/- 0.3 and 2.0 +/- 1.3 at low and high altitude, respectively, P > 0.1). The response to high altitude was significantly different between the two groups (P = 0.01). There was a significant inverse relation between the increase in the pressure gradient across the tricuspid valve and the change in myocardial blood flow reserve. HAPE-susceptible individuals not taking prophylactic treatment exhibit a reduced MBFr compared with either treated HAPE-susceptible individuals or healthy controls at high altitude.  相似文献   

8.
Lung injury due to mechanical ventilation is associated with an impairment of endogenous surfactant. It is unknown whether this impairment is a consequence of or an active contributor to the development and progression of lung injury. To investigate this issue, the present study addressed three questions: Do alterations to surfactant precede physiological lung dysfunction during mechanical ventilation? Which components are responsible for surfactant's biophysical dysfunction? Does exogenous surfactant supplementation offer a physiological benefit in ventilation-induced lung injury? Adult rats were exposed to either a low-stretch [tidal volume (Vt) = 8 ml/kg, positive end-expiratory pressure (PEEP) = 5 cmH2O, respiratory rate (RR) = 54-56 breaths/min (bpm), fractional inspired oxygen (Fi(O2)) = 1.0] or high-stretch (Vt = 30 ml/kg, PEEP = 0 cmH2O, RR = 14-16 bpm, Fi(O2) = 1.0) ventilation strategy and monitored for either 1 or 2 h. Subsequently, animals were lavaged and the composition and function of surfactant was analyzed. Separate groups of animals received exogenous surfactant after 1 h of high-stretch ventilation and were monitored for an additional 2 h. High stretch induced a significant decrease in blood oxygenation after 2 h of ventilation. Alterations in surfactant pool sizes and activity were observed at 1 h of high-stretch ventilation and progressed over time. The functional impairment of surfactant appeared to be caused by alterations to the hydrophobic components of surfactant. Exogenous surfactant treatment after a period of high-stretch ventilation mitigated subsequent physiological lung dysfunction. Together, these results suggest that alterations of surfactant are a consequence of the ventilation strategy that impair the biophysical activity of this material and thereby contribute directly to lung dysfunction over time.  相似文献   

9.
Cerebral blood flow increases at high altitude, but the mechanism of the increase and its role in adaptation to high altitude are unclear. We hypothesized that the hypoxemia at high altitude would increase cerebral blood flow, which would in turn defend O2 delivery to the brain. Noninvasive Doppler ultrasound was used to measure the flow velocities in the internal carotid and the vertebral arteries in six healthy male subjects. Within 2-4 h of arrival on Pikes Peak (4,300 m), velocities in both arteries were slightly and not significantly increased above sea-level values. By 18-44 h a peak increase of 20% was observed (combined P less than 0.025). Subsequently (days 4-12) velocities declined to values similar to those at sea level. At altitude the lowest arterial O2 saturation (SaO2) and the highest end-tidal PCO2 was observed on arrival. By day 4 and thereafter, when the flow velocities had returned toward sea-level values, hemoglobin concentration and SaO2 were increased over initial high-altitude values such that calculated O2 transport values were even higher than those at sea level. Although the cause of the failure for cerebral flow velocity to increase on arrival is not understood, the subsequent increase may act to defend brain O2 transport. With further increase in hemoglobin and SaO2 over time at high altitude, flow velocity returned to sea-level values.  相似文献   

10.
11.
The mechanisms responsible for pulmonary vascular remodeling in congenital heart disease with increased pulmonary blood flow remain unclear. We developed a lamb model of congenital heart disease and increased pulmonary blood flow utilizing an in utero placed aortopulmonary vascular graft (shunted lambs). Morphometric analysis of barium-injected pulmonary arteries indicated that by 4 wk of age, shunts had twice the pulmonary arterial density of controls (P < 0.05), and their pulmonary vessels showed increased muscularization and medial thickness at both 4 and 8 wk of age (P < 0.05). To determine the potential role of TGF-beta1 in this vascular remodeling, we investigated vascular changes in expression and localization of TGF-beta1 and its receptors TbetaRI, ALK-1, and TbetaRII in lungs of shunted and control lambs at 1 day and 1, 4, and 8 wk of life. Western blots demonstrated that TGF-beta1 and ALK-1 expression was elevated in shunts compared with control at 1 and 4 wk of age (P < 0.05). In contrast, the antiangiogenic signaling receptor TbetaRI was decreased at 4 wk of age (P < 0.05). Immunohistochemistry demonstrated shunts had increased TGF-beta1 and TbetaRI expression in smooth muscle layer and increased TGF-beta1 and ALK-1 in endothelium of small pulmonary arteries at 1 and 4 wk of age. Moreover, TbetaRI expression was significantly reduced in endothelium of pulmonary arteries in the shunt at 1 and 4 wk. Our data suggest that increased pulmonary blood flow dysregulates TGF-beta1 signaling, producing imbalance between pro- and antiangiogenic signaling that may be important in vascular remodeling in shunted lambs.  相似文献   

12.
Preeclampsia is a prevalent and potentially devastating disorder of pregnancy. Characterized by a sudden spike in blood pressure and urinary protein levels, it is associated with significant obstetric complications. BPH/5 is an inbred mouse model of preeclampsia with borderline hypertension before pregnancy. BPH/5 mice develop hypertension, proteinuria, and endothelial dysfunction during late gestation (after E14.5). We hypothesized that BPH/5 mice might exhibit early feto-placental abnormalities before the onset of maternal disease. All placental cell lineages were present in BPH/5 mice. However, the fetal and placental weights were reduced, with abnormalities in all the placental zones observed starting early in gestation (E9.5-E12.5). The fractional area occupied by the junctional zone was significantly reduced at all gestational timepoints. Markedly fewer CDKN1C-stained trophoblasts were seen invading the proximal decidual zone, and this was accompanied by reductions in Cdkn1c gene expression. Trophoblast giant cell morphology and cytokeratin staining were not altered, although the mRNA levels of several giant cell-specific markers were significantly downregulated. The labyrinth layer displayed decreased branching morphogenesis of endothelial cells, with electron microscopy evidence of attenuated trophoblast layers. The maternal decidual arteries showed increased wall-to-lumen ratios with persistence of actin-positive smooth muscle cells. These changes translated into dramatically increased vascular resistance in the uterine arteries, as measured by pulse-wave Doppler. Collectively, these results support the hypothesis that defects at the maternal-fetal interface are primary causal events in preeclampsia, and further suggest the BPH/5 model is important for investigations of the underlying pathogenic mechanisms in preeclampsia.  相似文献   

13.
We tested the hypothesis that, following exposure to high altitude, cerebrovascular reactivity to CO2 and cerebral autoregulation would be attenuated. Such alterations may predispose to central sleep apnea at high altitude by promoting changes in brain PCO2 and thus breathing stability. We measured middle cerebral artery blood flow velocity (MCAv; transcranial Doppler ultrasound) and arterial blood pressure during wakefulness in conditions of eucapnia (room air), hypocapnia (voluntary hyperventilation), and hypercapnia (isooxic rebeathing), and also during non-rapid eye movement (stage 2) sleep at low altitude (1,400 m) and at high altitude (3,840 m) in five individuals. At each altitude, sleep was studied using full polysomnography, and resting arterial blood gases were obtained. During wakefulness and polysomnographic-monitored sleep, dynamic cerebral autoregulation and steady-state changes in MCAv in relation to changes in blood pressure were evaluated using transfer function analysis. High altitude was associated with an increase in central sleep apnea index (0.2 +/- 0.4 to 20.7 +/- 23.2 per hour) and an increase in mean blood pressure and cerebrovascular resistance during wakefulness and sleep. MCAv was unchanged during wakefulness, whereas there was a greater decrease during sleep at high altitude compared with low altitude (-9.1 +/- 1.7 vs. -4.8 +/- 0.7 cm/s; P < 0.05). At high altitude, compared with low altitude, the cerebrovascular reactivity to CO2 in the hypercapnic range was unchanged (5.5 +/- 0.7 vs. 5.3 +/- 0.7%/mmHg; P = 0.06), while it was lowered in the hypocapnic range (3.1 +/- 0.7 vs. 1.9 +/- 0.6%/mmHg; P < 0.05). Dynamic cerebral autoregulation was further reduced during sleep (P < 0.05 vs. low altitude). Lowered cerebrovascular reactivity to CO2 and reduction in both dynamic cerebral autoregulation and MCAv during sleep at high altitude may be factors in the pathogenesis of breathing instability.  相似文献   

14.
15.
Men and mammals (excluding the indigenous mountain species) who are born at high altitude, or who ascend to live there for a long period, have to undergo acclimatization which affects virtually every system in the body. Since chronic hypoxia is the most important adverse factor in the mountain environment, the lung plays a major part in the process and shows many alterations in structure and function. However, we remain ignorant about many aspects of acclimatization of the lung to hypoxia especially at the ultrastructural level with respect to those cells whose normal function is not yet established. An account of what is known is given in this paper.  相似文献   

16.
Latent amoebiasis is aggravated at high altitude. Protean manifestations are common. Fever is usually absent. Liver tenderness is not a feature and may have to be specially elicited. Leucocytosis is rare. Bowel symptoms inspite of presence of intestinal ulcerations are usually absent. Response to treatment with emetine or chloroquin is unsatisfactory and relapse rate is high. These points may interest mountaineers and other sojourners to high altitude.  相似文献   

17.
18.
19.
Roy J. Shephard 《CMAJ》1973,109(3):207-209
Track times at moderate altitudes (7000 to 8000 feet) are modified by decreased wind resistance and by systemic disturbances such as mountain sickness, disruption of training, and a decrease of maximum oxygen intake. The optimum period of acclimatization is probably two to three days. This permits adjustment of cerebrospinal fluid acid-base balance, but minimizes disturbances of plasma volume and stroke volume. Further study is needed to establish whether altitude training can improve performance in sea-level competitions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号