首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Human embryonic stem cells (hESCs) offer a virtually unlimited source of neural cells for structural repair in neurological disorders, such as stroke. Neural cells can be derived from hESCs either by direct enrichment, or by isolating specific growth factor-responsive and expandable populations of human neural stem cells (hNSCs). Studies have indicated that the direct enrichment method generates a heterogeneous population of cells that may contain residual undifferentiated stem cells that could lead to tumor formation in vivo.

Methods/Principal Findings

We isolated an expandable and homogenous population of hNSCs (named SD56) from hESCs using a defined media supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and leukemia inhibitory growth factor (LIF). These hNSCs grew as an adherent monolayer culture. They were fully neuralized and uniformly expressed molecular features of NSCs, including nestin, vimentin and radial glial markers. These hNSCs did not express the pluripotency markers Oct4 or Nanog, nor did they express markers for the mesoderm or endoderm lineages. The self-renewal property of the hNSCs was characterized by a predominant symmetrical mode of cell division. The SD56 hNSCs differentiated into neurons, astrocytes and oligodendrocytes throughout multiple passages in vitro, as well as after transplantation. Together, these criteria confirm the definitive NSC identity of the SD56 cell line. Importantly, they exhibited no chromosome abnormalities and did not form tumors after implantation into rat ischemic brains and into naïve nude rat brains and flanks. Furthermore, hNSCs isolated under these conditions migrated toward the ischemia-injured adult brain parenchyma and improved the independent use of the stroke-impaired forelimb two months post-transplantation.

Conclusions/Significance

The SD56 human neural stem cells derived under the reported conditions are stable, do not form tumors in vivo and enable functional recovery after stroke. These properties indicate that this hNSC line may offer a renewable, homogenous source of neural cells that will be valuable for basic and translational research.  相似文献   

2.
Transplantation of human neural stem/progenitor cells (hNSCs) as a regenerative cell replacement therapy holds great promise. However, the underlying mechanisms remain unclear. We, here, focused on the interaction between hNSCs and allogeneic peripheral blood mononuclear cells (PBMCs) in a co-culture model. We found that hNSCs significantly decrease the CD3+ and CD8+ T cells, reduce the gamma delta T cells and increase the regulatory T cells, along with reduced pro-inflammatory cytokines and increased anti-inflammatory cytokines after co-culture. We also found that PBMCs, in turn, significantly promote the proliferation and differentiation of hNSCs. Our data suggest that hNSCs cross-talk with immune cells.  相似文献   

3.
Differentiation of human mesenchymal stem cells (hMSCs) requires the rewiring of energy metabolism. Herein, we demonstrate that the ATPase inhibitory factor 1 (IF1) is expressed in hMSCs and in prostate and colon stem cells but is not expressed in the differentiated cells. IF1 inhibits oxidative phosphorylation and regulates the activity of aerobic glycolysis in hMSCs. Silencing of IF1 in hMSCs mimics the metabolic changes observed in osteocytes and accelerates cellular differentiation. Activation of IF1 degradation acts as the switch that regulates energy metabolism during differentiation. We conclude that IF1 is a stemness marker important for maintaining the quiescence state.  相似文献   

4.
Adiponectin is the most abundant adipokine secreted from adipocytes. Accumulating evidence suggests that the physiological roles of adiponectin go beyond its metabolic effects. In the present study, we demonstrate that adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) are expressed in adult hippocampal neural stem/progenitor cells (hNSCs). Adiponectin treatment increases proliferation of cultured adult hNSCs in a dose- and time-dependent manner, whereas apoptosis and differentiation of adult hNSCs into neuronal or glial lineage were not affected. Adiponectin activates AMP-activated protein kinase and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in adult hNSCs. Pretreatment with the p38MAPK inhibitor SB203580, but not the AMP-activated protein kinase inhibitor Compound C, attenuates adiponectin-induced cell proliferation. Moreover, adiponectin induces phosphorylation of Ser-389, a key inhibitory site of glycogen synthase kinase 3β (GSK-3β), and this effect can be blocked by inhibition of p38MAPK with SB203580. Levels of total and nuclear β-catenin, the primary substrate of GSK-3β, were increased by adiponectin treatment. These results indicate that adiponectin stimulates proliferation of adult hNSCs, via acting on GSK-3β to promote nuclear accumulation of β-catenin. Thus, our studies uncover a novel role for adiponectin signaling in regulating proliferation of adult neural stem cells.  相似文献   

5.
Understanding basic processes of human neural stem cell (hNSC) biology and differentiation is crucial for the development of cell replacement therapies. Bcl-X(L) has been reported to enhance dopaminergic neuron generation from hNSCs and mouse embryonic stem cells. In this work, we wanted to study, at the cellular level, the effects that Bcl-X(L) may exert on cell death during differentiation of hNSCs, and also on cell fate decisions and differentiation. To this end, we have used both v-myc immortalized (hNS1 cell line) and non-immortalized neurosphere cultures of hNSCs. In culture, using different experimental settings, we have consistently found that Bcl-X(L) enhances neuron generation while precluding glia generation. These effects do not arise from a glia-to-neuron shift (changes in fate decisions taken by precursors) or by only cell death counteraction, but, rather, data point to Bcl-X(L) increasing proliferation of neuronal progenitors, and inhibiting the differentiation of glial precursors. In vivo, after transplantation into the aged rat striatum, Bcl-X(L) overexpressing hNS1 cells generated more neurons and less glia than the control ones, confirming the results obtained in vitro. These results indicate an action of Bcl-X(L) modulating hNSCs differentiation, and may be thus important for the future development of cell therapy strategies for the diseased mammalian brain.  相似文献   

6.
In a previous study, we have shown that human neural stem cells (hNSCs) transplanted in brain of mouse intracerebral hemorrhage (ICH) stroke model selectively migrate to the ICH lesion and induce behavioral recovery. However, low survival rate of grafted hNSCs in the brain precludes long-term therapeutic effect. We hypothesized that hNSCs overexpressing Akt1 transplanted into the lesion site could provide long-term improved survival of hNSCs, and behavioral recovery in mouse ICH model. F3 hNSC was genetically modified with a mouse Akt1 gene using a retroviral vector. F3 hNSCs expressing Akt1 were found to be highly resistant to H2O2-induced cytotoxicity in vitro. Following transplantation in ICH mouse brain, F3.Akt1 hNSCs induced behavioral improvement and significantly increased cell survival (50–100% increase) at 2 and 8 weeks post-transplantation as compared to parental F3 hNSCs. Brain transplantation of hNSCs overexpressing Akt1 in ICH animals provided functional recovery, and survival and differentiation of grafted hNSCs. These results indicate that the F3.Akt1 human NSCs should be a great value as a cellular source for the cellular therapy in animal models of human neurological disorders including ICH.  相似文献   

7.
A large number of treatment approaches have been used for spinal cord injury improvement, a medically incurable disorder, and subsequently stem cell transplantation appears to be a promising strategy. The main objective of this study is to ascertain whether combinational therapy of human neural stem cells (hNSCs) together with lithium chloride improves cell survival, proliferation, and differentiation in a rat spinal contusion model, or not. Contusive spinal cord injury was implemented on Wistar male rats. Experimental groups comprised of: control, hNSCs transplanted, lithium chloride (Li), and hNSCs and lithium chloride (hNSCs + Li). In every experimental group, locomotor activity score and motor evoked potential (MEP) were performed to evaluate motor recovery as well as histological assessments to determine mechanisms of improvement. In accordance with our results, the hNSCs + Li and the Li groups showed significant improvement in locomotor scores and MEP. Also, Histological assessments revealed that transplanted hNSCs are capable of differentiation and migration along the spinal cord. Although NESTIN-positive cells were proliferated significantly in the Lithium group in comparison with control and the hNSCs + Li groups, the quantity of ED1 cells in the hNSCs + Li was significantly larger than the other two groups. Our results demonstrate that combinational therapy of hNSCs with lithium chloride and lithium chloride individually are adequate for ameliorating more than partial functional recovery and endogenous repair in spinal cord-injured rats.  相似文献   

8.
9.
The effects of myostatin on adipogenic differentiation are poorly understood, and the underlying mechanisms are unknown. We determined the effects of human recombinant myostatin protein on adipogenesis of bone marrow-derived human mesenchymal stem cells (hMSCs) and adipose tissue-derived preadipocytes. For both progenitor cell types, differentiation in the presence of myostatin caused a dose-dependent reduction of lipid accumulation and diminished incorporation of exogenous fatty acid into cellular lipids. Myostatin significantly down-regulated the expression of adipocyte markers PPARgamma, C/EBPalpha, leptin, and aP2, but not C/EBPbeta. Overexpression of PPARgamma, but not C/EBPbeta, blocked the inhibitory effects of myostatin on adipogenesis. Myostatin induced phosphorylation of Smad3 in hMSCs; knockdown of Smad3 by RNAi or inhibition of its upstream kinase by an Alk5 inhibitor blocked the inhibitory effect of myostatin on adipogenesis in hMSCs, implying an important role of Smad3 activation in this event. Furthermore, myostatin enhanced nuclear translocation of beta-catenin and formation of the Smad3-beta-catenin-TCF4 complex, together with the altered expression of a number of Wnt/beta-catenin pathway genes in hMSCs. The inhibitory effects of myostatin on adipogenesis were blocked by RNAi silencing of beta-catenin and diminished by overexpression of dominant-negative TCF4. The conclusion is that myostatin inhibited adipogenesis in human bone marrow-derived mesenchymal stem cells and preadipocytes. These effects were mediated, in part, by activation of Smad3 and cross-communication of the TGFbeta/Smad signal to Wnt/beta-catenin/TCF4 pathway, leading to down-regulation of PPARgamma.  相似文献   

10.
Human neural stem cells (hNSC) represent an essential source of renewable brain cells for both experimental studies and cell replacement therapies. Their relatively slow rate of proliferation and physiological senescence in culture make their use cumbersome under some experimental and pre-clinical settings. The immortalization of hNSC with the v-myc gene (v-IhNSC) has been shown to generate stem cells endowed with enhanced proliferative capacity, which greatly facilitates the study of hNSCs, both in vitro and in vivo. Despite the excellent safety properties displayed by v-IhNSCs--which do not transform in vitro and are not tumorigenic in vivo--the v-myc gene contains several mutations and recombination elements, whose role(s) and effects remains to be elucidated, yielding unresolved safety concerns. To address this issue, we used a c-myc T58A retroviral vector to establish an immortal cell line (T-IhNSC) from the same hNSCs used to generate the original v-IhNSCs and compared their characteristics with the latter, with hNSC and with hNSC immortalized using c-myc wt (c-IhNSC). T-IhNSCs displayed an enhanced self-renewal ability, with their proliferative capacity and clonogenic potential being remarkably comparable to those of v-IhNSC and higher than wild type hNSCs and c-IhNSCs. Upon growth factors removal, T-IhNSC promptly gave rise to well-differentiated neurons, astrocytes and most importantly, to a heretofore undocumented high percentage of human oligodendrocytes (up to 23%). Persistent growth-factor dependence, steady functional properties, lack of ability to generate colonies in soft-agar colony-forming assay and to establish tumors upon orthotopic transplantation, point to the fact that immortalization by c-myc T58A does not bring about tumorigenicity in hNSCs. Hence, this work describes a novel and continuous cell line of immortalized human multipotent neural stem cells, in which the immortalizing agent is represented by a single gene which, in turn, carries a single and well characterized mutation. From a different perspective, these data report on a safe approach to increase human neural stem cells propagation in culture, without altering their basic properties. These T-IhNSC line provides a versatile model for the elucidation of the mechanisms involved in human neural stem cells expansion and for development of high throughput assays for both basic and translational research on human neural cell development. The improved proclivity of T-IhNSC to generate human oligodendrocytes propose T-IhNSC as a feasible candidate for the design of experimental and, perhaps, therapeutic approaches in demyelinating diseases.  相似文献   

11.
12.
Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.  相似文献   

13.
A better understanding of the molecular mechanisms governing stem cell self-renewal will foster the use of different types of stem cells in disease modeling and cell therapy strategies. Immortalization, understood as the capacity for indefinite expansion, is needed for the generation of any cell line. In the case of v-myc immortalized multipotent human Neural Stem Cells (hNSCs), we hypothesized that v-myc immortalization could induce a more de-differentiated state in v-myc hNSC lines. To test this, we investigated the expression of surface, biochemical and genetic markers of stemness and pluripotency in v-myc immortalized and control hNSCs (primary precursors, that is, neurospheres) and compared these two cell types to human Embryonic Stem Cells (hESCs) and fibroblasts. Using a Hierarchical Clustering method and a Principal Component Analysis (PCA), the v-myc hNSCs associated with their counterparts hNSCs (in the absence of v-myc) and displayed a differential expression pattern when compared to hESCs. Moreover, the expression analysis of pluripotency markers suggested no evidence supporting a reprogramming-like process despite the increment in telomerase expression. In conclusion, v-myc expression in hNSC lines ensures self-renewal through the activation of some genes involved in the maintenance of stem cell properties in multipotent cells but does not alter the expression of key pluripotency-associated genes.  相似文献   

14.
Cranial irradiation remains a frontline treatment for brain cancer, but also leads to normal tissue damage. Although low-dose irradiation (≤ 10 Gy) causes minimal histopathologic change, it can elicit variable degrees of cognitive dysfunction that are associated with the depletion of neural stem cells. To decipher the mechanisms underlying radiation-induced stem cell dysfunction, human neural stem cells (hNSCs) subjected to clinically relevant irradiation (0–5 Gy) were analyzed for survival parameters, cell-cycle alterations, DNA damage and repair, and oxidative stress. hNSCs showed a marked sensitivity to low-dose irradiation that was in part due to elevated apoptosis and the inhibition of cell-cycle progression that manifested as a G2/M checkpoint delay. Efficient removal of DNA double-strand breaks was indicated by the disappearance of γ-H2AX nuclear foci. A dose-responsive and persistent increase in oxidative and nitrosative stress was found in irradiated hNSCs, possibly the result of a higher metabolic activity in the fraction of surviving cells. These data highlight the marked sensitivity of hNSCs to low-dose irradiation and suggest that long-lasting perturbations in the CNS microenvironment due to radiation-induced oxidative stress can compromise the functionality of neural stem cells.  相似文献   

15.
Cancer treatments using stem cells expressing therapeutic genes have been identified for various types of cancers. In this study, we investigated inhibitory effects of HB1.F3.CD and HB1.F3.CD.IFN-β cells expressing Escherichia coli cytosine deaminase (CD) and human interferon-β (IFN-β) genes in intravenously (i.v.) injected mice with a metastasis model. In this treatment, pro-drug 5-fluorocytosine (5-FC) is converted to cytotoxic drug 5-fluorouracil by hNSCs expressing the CD gene, which inhibits DNA synthesis in cancer cells. Moreover, IFN-β induces apoptosis and reduces the growth of cancer cells. Upon MTT assay, proliferation of choriocarcinoma (JEG-3) cells decreased when co-cultured with hNSCs expressing CD and IFN-β genes. To confirm the cancer-tropic effect of these stem cells, chemoattractant factors (VEGF, CXCR4, and C-kit) secreted from JEG-3 cells were identified by polymerase chain reaction. hNSCs migrate toward JEG-3 cells due to ligand-receptor interactions of these factors. Accordingly, the migration capability of hNSCs toward JEG-3 cells was confirmed using an in vitro Trans-well assay, in vivo subcutaneously (s.c.) injected mice groups (xenograft model), and metastasis model. Intravenously injected hNSCs migrated freely to other organs when compared to s.c. injected hNSCs. Thus, we confirmed the inhibition of lung and ovarian metastasis of choriocarcinoma by i.v. injected HB1.F3.CD or HB1.F3.CD.IFN-β cells in the presence of 5-FC. Treatment of these stem cells also increased the survival rates of mice. In conclusion, this study showed that metastatic cancer was diminished by genetically engineered hNSCs and noncytotoxic drug 5-FC. This is the first report of the therapeutic potential of i.v. injected hNSCs in a metastasis model; therefore, the results indicate that this stem cell therapy can be used as an alternative novel tool to treat metastatic choriocarcinoma.  相似文献   

16.
Expression of adrenomedullin (AM), a potent vasodilator peptide, was studied during adipocyte differentiation of human mesenchymal stem cells (hMSCs). Immunoreactive AM levels in the medium were increased at day 4 and 8 of the adipocyte differentiation. Northern blot analysis showed increased expression of AM mRNA in hMSCs-derived adipocytes at day 4, 8, 12, and 18. Transient transfection assay showed that the promoter activity was higher in hMSCs-derived adipocytes than in hMSCs, when cells were transfected with plasmids containing a cis-acting region (-70/-29) of the human AM gene. Electrophoretic mobility shift assay showed that specific bands bound to the region (-70/-29) in hMSCs-derived adipocytes but not in hMSCs, and were abolished by the stimulatory protein 1 (Sp1) antibody. The present study has shown that AM expression is up-regulated during adipocyte differentiation of hMSCs probably via the interaction between Sp1 or Sp1-related factor(s) and the AM promoter region (-70/-29).  相似文献   

17.
18.
Human mesenchymal stem cells (hMSCs) are able to both self-replicate and differentiate into a variety of cell types. Fibroblast growth factor-2 (FGF-2) stimulates the growth of hMSCs in vitro, but its mechanisms have not been clarified yet. In this study, we investigated whether cellular senescence was involved in the stimulation of hMSCs growth by FGF-2 and the expression levels of transforming growth factor-beta1 and -beta2 (TGF-betas). Because hMSCs were induced cellular senescence due to long-term culture, FGF-2 decreased the percentage of senescent cells and suppressed G1 cell growth arrest through the suppression of p21(Cip1), p53, and p16(INK4a) mRNA expression levels. Furthermore, the levels of TGF-betas mRNA expression in hMSCs were increased by long-term culture, but FGF-2 suppressed the increase of TGF-beta2 mRNA expression due to long-term culture. These results suggest that FGF-2 suppresses the hMSCs cellular senescence dependent on the length of culture through down-regulation of TGF-beta2 expression.  相似文献   

19.
In this study, we investigated the regulatory role of ganglioside GD1a in the differentiation of osteoblasts from human mesenchymal stem cells (hMSCs) by using lentivirus-containing short hairpin (sh)RNA to knockdown ST3 β-galactoside α-2, 3-sialyltransferase 2 (ST3Gal II) mRNA expression. After hMSCs were infected for 72 h with the lentivirus constructed with ST3Gal II shRNAs, the puromycin-resistant cells were selected and subcultured to produce hMSCs with ST3Gal II mRNA knockdown. The hMSCs established from human dental papilla abundantly expressed CD44 and CD105, but not CD45 and CD117. Osteoblasts that differentiated from normal hMSCs showed a significant increase in alkaline phosphatase (ALP) activity and ganglioside GD1a expression level compared with those in hMSCs. Lentiviral infection of hMSCs successfully induced a marked inhibition of ST3Gal II mRNA expression and caused a significant decrease in ALP activity and ganglioside GD1a expression. During osteoblastic differentiation, the increased ALP activity remarkably reduced by suppression of ganglioside GD1a expression by ST3Gal II shRNA. Ganglioside GD1a and ALP were mainly expressed in the cell body of hMSCs and osteoblasts with colocalization. The phosphorylation of extracellular signal-regulated kinases (ERK) 1/2 mitogen-activated protein (MAP) kinase and epidermal growth factor receptor (EGFR) was significantly reduced in the osteoblasts that had differentiated from the hMSCs with ST3Gal II mRNA knockdown. These results suggest that ganglioside GD1a plays an important role in the regulation of osteoblastic differentiation of hMSCs through the activation of ERK 1/2 MAP kinase and EGFR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号