首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近二十多年,全球范围内先后爆发了由严重急性呼吸综合征冠状病毒(severe acute respiratory syndrome coronavirus,SARS-CoV)、中东呼吸综合征冠状病毒(middle east respiratory syndrome coronavirus,MERS-CoV)和严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)3种高致病性冠状病毒导致的疫情。这3种高致病性冠状病毒感染通常伴随着免疫系统功能失调,临床表现有淋巴细胞减少症、细胞因子风暴、急性呼吸系统窘迫综合征,甚至多器官衰竭而导致死亡。揭示高致病性冠状病毒在免疫应答中的作用机制,对于预防与控制冠状病毒感染具有重要意义。本文总结了SARS-CoV、MRES-CoV和SARS-CoV-2的进入机制和受体特征、固有免疫应答和适应性免疫应答失调方面的研究进展,强调了高致病性冠状病毒与宿主免疫应答之间的复杂相互作用,以期为防治冠状病毒感染提供参考。  相似文献   

2.
In 2002, severe acute respiratory syndrome (SARS)-coronavirus (CoV) appeared as a novel human virus with high similarity to bat coronaviruses. However, while SARS-CoV uses the human angiotensin-converting enzyme 2 (ACE2) receptor for cellular entry, no coronavirus isolated from bats appears to use ACE2. Here we show that signatures of recurrent positive selection in the bat ACE2 gene map almost perfectly to known SARS-CoV interaction surfaces. Our data indicate that ACE2 utilization preceded the emergence of SARS-CoV-like viruses from bats.  相似文献   

3.
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has been declared a pandemic by WHO. The clinical manifestation and disease progression in COVID-19 patients varies from minimal symptoms to severe respiratory issues with multiple organ failure. Understanding the mechanism of SARS-CoV-2 interaction with host cells will provide key insights into the effective molecular targets for the development of novel therapeutics. Recent studies have identified virus-mediated phosphorylation or activation of some major signaling pathways, such as ERK1/2, JNK, p38, PI3K/AKT and NF-κB signaling, that potentially elicit the cytokine storm that serves as a major cause of tissue injuries. Several studies highlight the aggressive inflammatory response particularly ‘cytokine storm’ in SARS-CoV-2 patients. A depiction of host molecular dynamics triggered by SARS-CoV-2 in the form of a network of signaling molecules will be helpful for COVID-19 research. Therefore, we developed the signaling pathway map of SARS-CoV-2 infection using data mined from the recently published literature. This integrated signaling pathway map of SARS-CoV-2 consists of 326 proteins and 73 reactions. These include information pertaining to 1,629 molecular association events, 30 enzyme catalysis events, 43 activation/inhibition events, and 8,531 gene regulation events. The pathway map is publicly available through WikiPathways: https://www.wikipathways.org/index.php/Pathway:WP5115.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00632-4.  相似文献   

4.
The sudden appearance and potential lethality of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) in humans has resulted in a focusing of new attention on the determination of both its origins and evolution. The relationship existing between SARS-CoV and other groups of coronaviruses was determined via analyses of phylogenetic trees and comparative genomic analyses of the coronavirus genes: polymerase (Orf1ab), spike (S), envelope (E), membrane (M) and nucleocapsid (N). Although the coronaviruses are traditionally classed into 3 groups, with SARS-CoV forming a 4th group, the phylogenetic position and origins of SARS-CoV remain a matter of some controversy. Thus, we conducted extensive phylogenetic analyses of the genes common to all coronavirus groups, using the Neighbor-joining, Maximum-likelihood, and Bayesian methods. Our data evidenced largely identical topology for all of the obtained phylogenetic trees, thus supporting the hypothesis that the relationship existing between SARS-CoV and group 2 coronavirus is a monophyletic one. Additional comparative genomic studies, including sequence similarity and protein secondary structure analyses, suggested that SARS-CoV may bear a closer relationship with group 2 than with the other coronavirus groups. Although our data strongly suggest that group 2 coronaviruses are most closely related with SARS-CoV, further and more detailed analyses may provide us with an increased amount of information regarding the origins and evolution of the coronaviruses, most notably SARS-CoV.  相似文献   

5.
6.
The severe acute respiratory syndrome coronavirus (SARS-CoV) and recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) epidemics have proven the ability of coronaviruses to cross species barrier and emerge rapidly in humans. Other coronaviruses such as porcine epidemic diarrhea virus (PEDV) are also known to cause major disease epidemics in animals wiith huge economic loss. This special issue in Virology Journal aims to highlight the advances and key discoveries in the animal origin, viral evolution, epidemiology, diagnostics and pathogenesis of the emerging and re-emerging coronaviruses in both humans and animals.  相似文献   

7.
A novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), has recently been identified as the causative agent of severe acute respiratory syndrome (SARS). SARS-CoV appears similar to other coronaviruses in both virion structure and genome organization. It is known for other coronaviruses that the spike (S) glycoprotein is required for both viral attachment to permissive cells and for fusion of the viral envelope with the host cell membrane. Here we describe the construction and expression of a soluble codon-optimized SARS-CoV S glycoprotein comprising the first 1,190 amino acids of the native S glycoprotein (S(1190)). The codon-optimized and native S glycoproteins exhibit similar molecular weight as determined by Western blot analysis, indicating that synthetic S glycoprotein is modified correctly in a mammalian expression system. S(1190) binds to the surface of Vero E6 cells, a cell permissive to infection, as demonstrated by fluorescence-activated cell sorter analysis, suggesting that S(1190) maintains the biologic activity present in native S glycoprotein. This interaction is blocked with serum obtained from recovering SARS patients, indicating that the binding is specific. In an effort to map the ligand-binding domain of the SARS-CoV S glycoprotein, carboxy- and amino-terminal truncations of the S(1190) glycoprotein were constructed. Amino acids 270 to 510 were the minimal receptor-binding region of the SARS-CoV S glycoprotein as determined by flow cytometry. We speculate that amino acids 1 to 510 of the SARS-CoV S glycoprotein represent a unique domain containing the receptor-binding site (amino acids 270 to 510), analogous to the S1 subunit of other coronavirus S glycoproteins.  相似文献   

8.
The 2003 global outbreak of progressive respiratory failure was caused by a newly emerged virus, severe acute respiratory syndrome coronavirus (SARS-CoV). In contrast to many well-studied enveloped viruses that assemble and bud at the plasma membrane, coronaviruses assemble by budding into the lumen of the endoplasmic reticulum-Golgi intermediate compartment and are released from the cell by exocytosis. For this to occur, the viral envelope proteins must be efficiently targeted to the Golgi region of the secretory pathway. Although the envelope protein (E) makes up only a small percentage of the viral envelope, it plays an important, as-yet-undefined role in virus production. To dissect the targeting of the SARS-CoV E protein to the Golgi region, we exogenously expressed the protein and various mutants from cDNA and determined their localization using immunofluorescence microscopy and biochemical assays. We show that the cytoplasmic tail of the SARS-CoV E protein is sufficient to redirect a plasma membrane protein to the Golgi region. Through site-directed mutagenesis, we demonstrate that a predicted beta-hairpin structural motif in the tail is sufficient for Golgi complex localization of a reporter protein. This motif is conserved in E proteins of beta and gamma coronaviruses (formerly referred to as group 2 and 3 coronaviruses), where it also functions as a Golgi complex-targeting signal. Dissecting the mechanism of targeting of the SARS-CoV E protein will lead to a better understanding of its role in the assembly and release of virions.  相似文献   

9.
The genome organization and expression strategy of the newly identified severe acute respiratory syndrome coronavirus (SARS-CoV) were predicted using recently published genome sequences. Fourteen putative open reading frames were identified, 12 of which were predicted to be expressed from a nested set of eight subgenomic mRNAs. The synthesis of these mRNAs in SARS-CoV-infected cells was confirmed experimentally. The 4382- and 7073 amino acid residue SARS-CoV replicase polyproteins are predicted to be cleaved into 16 subunits by two viral proteinases (bringing the total number of SARS-CoV proteins to 28). A phylogenetic analysis of the replicase gene, using a distantly related torovirus as an outgroup, demonstrated that, despite a number of unique features, SARS-CoV is most closely related to group 2 coronaviruses. Distant homologs of cellular RNA processing enzymes were identified in group 2 coronaviruses, with four of them being conserved in SARS-CoV. These newly recognized viral enzymes place the mechanism of coronavirus RNA synthesis in a completely new perspective. Furthermore, together with previously described viral enzymes, they will be important targets for the design of antiviral strategies aimed at controlling the further spread of SARS-CoV.  相似文献   

10.
The identification of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 reaffirmed the importance of understanding how coronaviruses emerge, infect, and cause disease. By comparing what is known about severe acute respiratory syndrome coronavirus (SARS-CoV) to what has recently been found for MERS-CoV, researchers are discovering similarities and differences that may be important for pathogenesis. Here we discuss what is known about each virus and what gaps remain in our understanding, especially concerning MERS-CoV.  相似文献   

11.
Yuan X  Shan Y  Yao Z  Li J  Zhao Z  Chen J  Cong Y 《Molecules and cells》2006,21(2):186-191
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondria-specific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.  相似文献   

12.
Ren L  Yang R  Guo L  Qu J  Wang J  Hung T 《DNA and cell biology》2005,24(8):496-502
The pathogenesis of the severe acute respiratory syndrome (SARS), a newly emerging life-threatening disease in humans, remains unknown. It is believed that the modulation of apoptosis is relevant to diseases that are caused by various viruses. To examine potential apoptotic mechanisms related to SARS, we investigated features of apoptosis induced by the SARS-associated coronavirus (SARS-CoV) in host cells. The results indicated that the SARS-CoV-induced apoptosis in Vero cells in a virus replication-dependent manner. Additionally, the downregulation of Bcl-2, the activation of casapse 3, as well as the upregulation of Bax were detected, suggesting the involvement of the caspase family and the activation of the mitochondrial signaling pathway. Although there is a positive correlation between apoptosis and virus replication, the latter is not significantly blocked by treatment with the caspase inhibitor z-DEVD-FMK. These preliminary data provide important information on both the pathogenesis and potential antiviral targets of SARS-CoV.  相似文献   

13.
Singh  Ashutosh  Singh  Rahul Soloman  Sarma  Phulen  Batra  Gitika  Joshi  Rupa  Kaur  Hardeep  Sharma  Amit Raj  Prakash  Ajay  Medhi  Bikash 《中国病毒学》2020,35(3):290-304
The recent outbreak of coronavirus disease(COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome coronavirus(MERSCoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.  相似文献   

14.
15.
Focused efforts by several international laboratories have resulted in the sequencing of the genome of the causative agent of severe acute respiratory syndrome (SARS), novel coronavirus SARS-CoV, in record time. Using cumulative skew diagrams, I found tht mutational patterns in the SARS-CoV genome were strikingly different from other coronaviruses in terms of mutation rates, although they were in general agreement with the model of the coronavirus lifecycle. These findings might be relevant for the development of sequence-based diagnostics and the design of agents to treat SARS.  相似文献   

16.
The severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein, which is not expressed by other known coronaviruses, can down-regulate the envelope (E) protein via a proteasome-dependent pathway. Here, we showed that the down-regulation of E is not dependent on the lysine residues on 8b and the reduction of polyubiquitination of E mutants is not correlated with their down-regulation by 8b, suggesting an ubiquitin-independent proteasome pathway is involved. A time-course study revealed that 8b was expressed at late-stages of SARS-CoV infection. By using Vero E6 cells stably expressing green fluorescence protein-tagged 8b, ectopic expression of 8b was shown to significantly reduce the production of progeny virus and down-regulate E expression. Taken together, these results suggest that 8b negatively modulates virus replication by down-regulating E via an ubiquitin-independent proteasome pathway.  相似文献   

17.
The outbreak of the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) responsible for coronavirus disease 2019 (COVID-19) has developed into an unprecedented global pandemic. Clinical investigations in patients with COVID-19 has shown a strong upregulation of cytokine and interferon production in SARS-CoV2- induced pneumonia, with an associated cytokine storm syndrome. Thus, the identification of existing approved therapies with proven safety profiles to treat hyperinflammation is a critical unmet need in order to reduce COVI-19 associated mortality. To date, no specific therapeutic drugs or vaccines are available to treat COVID-19 patients. This review evaluates several options that have been proposed to control SARS-CoV2 hyperinflammation and cytokine storm, eincluding antiviral drugs, vaccines, small-molecules, monoclonal antibodies, oligonucleotides, peptides, and interferons (IFNs).  相似文献   

18.
The severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein is one of the opening reading frames in the viral genome with no homologue in other known coronaviruses. Expression of the 3a protein has been demonstrated during both in vitro and in vivo infection. Here we present biochemical data to show that 3a is a novel coronavirus structural protein. 3a was detected in virions purified from SARS-CoV infected Vero E6 cells although two truncated products were present predominantly instead of the full-length protein. In Vero E6 cells transiently transfected with a cDNA construct for expressing 3a, a similar cleavage was observed. Furthermore, co-expression of 3a, membrane and envelope proteins using the baculovirus system showed that both full-length and truncated 3a can be assembled into virus-like particles. This is the first report that demonstrated the incorporation of 3a into virion and showed that the SARS-CoV encodes a novel coronavirus structural protein.  相似文献   

19.
21世纪以来,冠状病毒频频引起危害人类健康的重要传染病,其中包括2003年严重急性呼吸综合征冠状病毒(SARS-CoV)、2012年中东呼吸综合征冠状病毒(MERS-CoV)和新型冠状病毒(SARS-CoV-2),目前对这些病毒引发的疾病并无特效的治疗药物。G-四链体(G-quadruplex,G4)是在DNA或RNA的鸟嘌呤富集区形成的非典型二级结构,可存在于人类和病毒基因组中,G-四链体的不同位置对病毒复制和感染等过程发挥重要调控作用。本研究针对七种与人类疾病相关的冠状病毒以及与SARS-CoV-2同源性较高的三种蝙蝠相关病毒,通过全基因组序列分析潜在四链体形成序列(Potential quadruplex-forming sequences,PQS),结果发现,十种病毒中均存在一定数量的PQS基序,同时对SARS-CoV-2 G-四链体存在位置及形成潜力进行评估,并分析了不同变异株间G-四链体基序的保守性。本研究对SARS-CoV-2基因组中G-四链体进行初步预测与探讨,旨在为COVID-19治疗提供一种新的药物靶点,使其更好地应用于临床研究。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号