首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
胰岛素反应性的葡萄糖转运蛋白4(glucose transporter 4,GLUT4)在葡萄糖的摄取和代谢过程中发挥着重要作用。GLUT4蛋白表达水平直接影响机体葡萄糖的利用。肌细胞增强因子2(myocyte enhancer factor 2,MEF2)、过氧化物酶体增殖物激活受体(peroxisome proliferator activated receptors,PPARs)、CCAAT增强子结合蛋白α(CCAAT enhancer binding protein α,C/EBP-α)、固醇类反应元件结合蛋白1c(sterol response element binding protein 1c,SREBP-1c)等转录因子可以上调或下调Glut4基因转录。激素、代谢以及一些病理状态可以通过改变转录因子的量或活性影响Glut4。本文综述了在Glut4基因表达中发挥作用的转录因子,以及在特定的生理或病生理状态下Glut4基因表达调控的机制。  相似文献   

4.
5.
Malignant cells are known to have accelerated metabolism, high glucose requirements, and increased glucose uptake. Transport of glucose across the plasma membrane of mammalian cells is the first rate-limiting step for glucose metabolism and is mediated by facilitative glucose transporter (GLUT) proteins. Increased glucose transport in malignant cells has been associated with increased and deregulated expression of glucose transporter proteins, with overexpression of GLUT1 and/or GLUT3 a characteristic feature. Oncogenic transformation of cultured mammalian cells causes a rapid increase of glucose transport and GLUT1 expression via interaction with GLUT1 promoter enhancer elements. In human studies, high levels of GLUT1 expression in tumors have been associated with poor survival. Studies indicate that glucose transport in breast cancer is not fully explained by GLUT1 or GLUT3 expression, suggesting involvement of another glucose transporter. Recently, a novel glucose transporter protein, GLUT12, has been found in breast and prostate cancers. In human breast and prostate tumors and cultured cells, GLUT12 is located intracellularly and at the cell surface. Trafficking of GLUT12 to the plasma membrane could therefore contribute to glucose uptake. Several factors have been implicated in the regulation of glucose transporter expression in breast cancer. Hypoxia can increase GLUT1 levels and glucose uptake. Estradiol and epidermal growth factor, both of which can play a role in breast cancer cell growth, increase glucose consumption. Estradiol and epidermal growth factor also increase GLUT12 protein levels in cultured breast cancer cells. Targeting GLUT12 could provide novel methods for detection and treatment of breast and prostate cancer.  相似文献   

6.
7.
8.
9.
10.
11.
Glucocorticoid hormones and p44/42 mitogen-activated protein kinase (MAPK) inactivation are considered to be important in small-intestinal differentiation/maturation. In this study, we found that co-treatment with glucocorticoid hormone agonist dexamethasone and p44/42 MAPK inhibitor PD98059 in intestinal cell line Caco-2 strongly induced GLUT5 gene expression. Glucocorticoid hormone receptor (GR) was translocated from the cytoplasm to the nucleus and de-phosphorylated at serine residue 203 in the nucleus, by combined treatment with dexamethasone and PD98059. The binding of GR, as well as acetylated histones H3 and H4, to the promoter/enhancer region of GLUT5 gene was enhanced by combined treatment with dexamethasone and PD98059. These results suggest that the inactivation of p44/42 MAP kinase enhances glucocorticoid hormone-induced GLUT5 gene expression, probably through controlling the phosphorylation at serine 203 and nuclear transport of GR, as well as histone acetylation on the promoter/enhancer region of GLUT5 gene.  相似文献   

12.
13.
ObjectivesAPOC1 has been reported to promote tumor progression. Nevertheless, its impact on cell proliferation and glycolysis in gastric cancer (GC) remains to be probed. Hence, this study explored the related impacts and mechanisms.MethodsDLEU1, SMYD2, and APOC1 expression was detected in GC cells. Afterward, ectopic expression and knockdown experiments were conducted in GC cells, followed by measurement of cell proliferation, glucose uptake capability, lactic acid production, ATP content, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), and GLUT1, HK2, and LDHA expression. In addition, interactions between DLEU1 and SMYD2 were analyzed with RIP and RNA pull down assays, and the binding of SMYD2 to APOC1 promoter and the methylation modification of SMYD2 in H3K4me3 were assessed with a ChIP assay. The ectopic tumor formation experiment in nude mice was conducted for in vivo validation.ResultsDLEU1, SMYD2, and APOC1 were highly expressed in GC cells. The downregulation of DLEU1 or APOC1 inhibited glucose uptake capability, lactic acid production, ECAR, the expression of GLUT1, HK2, and LDHA, ATP contents, and proliferation but augmented OCR in GC cells, which was also verified in animal experiments. Mechanistically, DLEU1 interacted with SMYD2 and recruited SMYD2 to APOC1 promoter to promote H3K4me3 modification, thus facilitating APOC1 expression. Furthermore, the effects of DLEU1 silencing on GC cell proliferation and glycolysis were negated by overexpressing SMYD2 or APOC1.ConclusionLncRNA DLEU1 recruited SMYD2 to upregulate APOC1 expression, thus boosting GC cell proliferation and glycolysis.  相似文献   

14.
15.
16.
17.
18.
One mechanism by which mammalian cells regulate the uptake of glucose is the number of glucose transporter proteins (GLUT) present at the plasma membrane. In insulin-responsive cells types, GLUT4 is released from intracellular stores through inactivation of the Rab GTPase activating protein Tre-2/USP6-BUB2-Cdc16 domain family member 4 (TBC1D4) (also known as AS160). Here we describe that TBC1D4 forms a protein complex with protein kinase WNK1 in human embryonic kidney (HEK293) cells. We show that WNK1 phosphorylates TBC1D4 in vitro and that the expression levels of WNK1 in these cells regulate surface expression of the constitutive glucose transporter GLUT1. WNK1 was found to increase the binding of TBC1D4 to regulatory 14-3-3 proteins while reducing its interaction with the exocytic small GTPase Rab8A. These effects were dependent on the catalytic activity because expression of a kinase-dead WNK1 mutant had no effect on binding of 14-3-3 and Rab8A, or on surface GLUT1 levels. Together, the data describe a pathway regulating constitutive glucose uptake via GLUT1, the expression level of which is related to several human diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号