首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pharmacokinetic (PK) and pharmacodynamic (PD) models seek to describe the temporal pattern of drug exposures and their associated pharmacological effects produced at micro- and macro-scales of organization. Antibody-based drugs have been developed for a large variety of diseases, with effects exhibited through a comprehensive range of mechanisms of action. Mechanism-based PK/PD and systems pharmacology models can play a major role in elucidating and integrating complex antibody pharmacological properties, such as nonlinear disposition and dynamical intracellular signaling pathways triggered by ligation to their cognate targets. Such complexities can be addressed through the use of robust computational modeling techniques that have proven powerful tools for pragmatic characterization of experimental data and for theoretical exploration of antibody efficacy and adverse effects. The primary objectives of such multi-scale mathematical models are to generate and test competing hypotheses and to predict clinical outcomes. In this review, relevant systems pharmacology and enhanced PD (ePD) models that are used as predictive tools for antibody-based drug action are reported. Their common conceptual features are highlighted, along with approaches used for modeling preclinical and clinically available data. Key examples illustrate how systems pharmacology and ePD models codify the interplay among complex biology, drug concentrations, and pharmacological effects. New hybrid modeling concepts that bridge cutting-edge systems pharmacology models with established PK/ePD models will be needed to anticipate antibody effects on disease in subpopulations and individual patients.  相似文献   

2.
3.
Background: The antineoplastic activity of Chelidonium majus has been reported, but its mechanism of action (MoA) is unsuspected. The emerging theory of systems pharmacology may be a useful approach to analyze the complicated MoA of this multi-ingredient traditional Chinese medicine (TCM). Methods: We collected the ingredients and related compound-target interactions of C. majus from several databases. The bSDTNBI (balanced substructure-drug-target network-based inference) method was applied to predict each ingredient’s targets. Pathway enrichment analysis was subsequently conducted to illustrate the potential MoA, and prognostic genes were identified to predict the certain types of cancers that C. majus might be beneficial in treatment. Bioassays and literature survey were used to validate the in silico results. Results: Systems pharmacology analysis demonstrated that C. majus exerted experimental or putative interactions with 18 cancer-associated pathways, and might specifically act on 13 types of cancers. Chelidonine, sanguinarine, chelerythrine, berberine, and coptisine, which are the predominant components of C. majus, may suppress the cancer genes by regulating cell cycle, inducing cell apoptosis and inhibiting proliferation. Conclusions: The antineoplastic MoA of C. majus was investigated by systems pharmacology approach. C. majus exhibited promising pharmacological effect against cancer, and may consequently be useful material in further drug development. The alkaloids are the key components in C. majus that exhibit anticancer activity.  相似文献   

4.
Background: Traditional Chinese medicine (TCM) treats diseases in a holistic manner, while TCM formulae are multi-component, multi-target agents at the molecular level. Thus there are many parallels between the key ideas of TCM pharmacology and network pharmacology. These years, TCM network pharmacology has developed as an interdisciplinary of TCM science and network pharmacology, which studies the mechanism of TCM at the molecular level and in the context of biological networks. It provides a new research paradigm that can use modern biomedical science to interpret the mechanism of TCM, which is promising to accelerate the modernization and internationalization of TCM. Results: In this paper we introduce state-of-the-art free data sources, web servers and softwares that can be used in the TCM network pharmacology, including databases of TCM, drug targets and diseases, web servers for the prediction of drug targets, and tools for network and functional analysis. Conclusions: This review could help experimental pharmacologists make better use of the existing data and methods in their study of TCM.  相似文献   

5.
Background: Hepatitis B virus (HBV) has affected over 300 million people worldwide which causes to induce mostly liver disease and liver cancer. It is a member of the family Hepadnaviridae which is a small DNA virus with unusual characters like retroviruses. Generally, hepatoprotective drugs provoke some side effects in human beings. For the reason, this study aims to identify alternative drug molecules from the natural source of medicinal plants with smaller quantity of side effects than those conventional drugs in treating HBV. Methods: We developed computational methods for calculating drug and target binding resemblance using the Maestro v10.2 of Schrodinger suite. The target and ligand molecules were obtained from recognized databases. Ligand molecules of 40 phytoconstituents were retrieved from variety of plants after we executed crucial analyses such as molecular docking and absorption, distribution, metabolism, and excretion (ADME) analysis.Results: In the docking analysis, the natural analogues repandusinic acid showed better docking scores of –14.768 with good binding contacts. The remaining bioactive molecules corilagin, furosin, nirurin, iso-quercetin and gallocatechin also showed better docking scores.Conclusion: This computational analysis reveals that repandusinic acid is a suitable drug candidate for HBV. Therefore, we recommend that this analogue is suitable in further exploration using in vitro studies.  相似文献   

6.
A recent trend in drug development is to identify drug combinations or multi-target agents that effectively modify multiple nodes of disease-associated networks. Such polypharmacological effects may reduce the risk of emerging drug resistance by means of attacking the disease networks through synergistic and synthetic lethal interactions. However, due to the exponentially increasing number of potential drug and target combinations, systematic approaches are needed for prioritizing the most potent multi-target alternatives on a global network level. We took a functional systems pharmacology approach toward the identification of selective target combinations for specific cancer cells by combining large-scale screening data on drug treatment efficacies and drug-target binding affinities. Our model-based prediction approach, named TIMMA, takes advantage of the polypharmacological effects of drugs and infers combinatorial drug efficacies through system-level target inhibition networks. Case studies in MCF-7 and MDA-MB-231 breast cancer and BxPC-3 pancreatic cancer cells demonstrated how the target inhibition modeling allows systematic exploration of functional interactions between drugs and their targets to maximally inhibit multiple survival pathways in a given cancer type. The TIMMA prediction results were experimentally validated by means of systematic siRNA-mediated silencing of the selected targets and their pairwise combinations, showing increased ability to identify not only such druggable kinase targets that are essential for cancer survival either individually or in combination, but also synergistic interactions indicative of non-additive drug efficacies. These system-level analyses were enabled by a novel model construction method utilizing maximization and minimization rules, as well as a model selection algorithm based on sequential forward floating search. Compared with an existing computational solution, TIMMA showed both enhanced prediction accuracies in cross validation as well as significant reduction in computation times. Such cost-effective computational-experimental design strategies have the potential to greatly speed-up the drug testing efforts by prioritizing those interventions and interactions warranting further study in individual cancer cases.  相似文献   

7.
Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology. Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites’ concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC. Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model. Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.  相似文献   

8.
Effects of cellular pharmacology on drug distribution in tissues.   总被引:2,自引:0,他引:2       下载免费PDF全文
The efficacy of targeted therapeutics such as immunotoxins is directly related to both the extent of distribution achievable and the degree of drug internalization by individual cells in the tissue of interest. The factors that influence the tissue distribution of such drugs include drug transport; receptor/drug binding; and cellular pharmacology, the processing and routing of the drug within cells. To examine the importance of cellular pharmacology, previously treated only superficially, we have developed a mathematical model for drug transport in tissues that includes drug and receptor internalization, recycling, and degradation, as well as drug diffusion in the extracellular space and binding to cell surface receptors. We have applied this "cellular pharmacology model" to a model drug/cell system, specifically, transferrin and the well-defined transferrin cycle in CHO cells. We compare simulation results to models with extracellular diffusion only or diffusion with binding to cell surface receptors and present a parameter sensitivity analysis. The comparison of models illustrates that inclusion of intracellular trafficking significantly increases the total transferrin concentration throughout much of the tissue while decreasing the penetration depth. Increasing receptor affinity or tissue receptor density reduces permeation of extracellular drug while increasing the peak value of the intracellular drug concentration, resulting in "internal trapping" of transferrin near the source; this could account for heterogeneity of drug distributions observed in experimental systems. Other results indicate that the degree of drug internalization is not predicted by the total drug profile. Hence, when intracellular drug is required for a therapeutic effect, the optimal treatment may not result from conditions that produce the maximal total drug distribution. Examination of models that include cellular pharmacology may help guide rational drug design and provide useful information for whole body pharmacokinetic studies.  相似文献   

9.
Network pharmacology: the next paradigm in drug discovery   总被引:1,自引:0,他引:1  
The dominant paradigm in drug discovery is the concept of designing maximally selective ligands to act on individual drug targets. However, many effective drugs act via modulation of multiple proteins rather than single targets. Advances in systems biology are revealing a phenotypic robustness and a network structure that strongly suggests that exquisitely selective compounds, compared with multitarget drugs, may exhibit lower than desired clinical efficacy. This new appreciation of the role of polypharmacology has significant implications for tackling the two major sources of attrition in drug development--efficacy and toxicity. Integrating network biology and polypharmacology holds the promise of expanding the current opportunity space for druggable targets. However, the rational design of polypharmacology faces considerable challenges in the need for new methods to validate target combinations and optimize multiple structure-activity relationships while maintaining drug-like properties. Advances in these areas are creating the foundation of the next paradigm in drug discovery: network pharmacology.  相似文献   

10.
目的:设计并构建新型冠状病毒(SARS-CoV-2)受体结合结构域(receptor binding domain,RBD)在毕赤酵母表面的展示体系,并对表面展示的RBD进行功能性评价,从而为以RBD为靶点的高通量药物筛选平台奠定基础。方法:将四种锚定分子与新冠病毒RBD融合,电转化至毕赤酵母中;通过细胞免疫荧光分析,筛选能够成功展示RBD的锚定系统;进一步分析其与血管紧张素转化酶2(angiotensin-converting enzyme 2,ACE2)受体的亲和力,证明展示在细胞表面RBD分子的功能。结果:仅Sed1p锚定分子能够有效呈递RBD至毕赤酵母细胞表面,展示效率约为70%;亲和力分析结果表明,ACE2受体和表面展示RBD的亲和力(KD = 30.42 nmol/L)与溶液中RBD的亲和力(KD = 16.00 nmol/L)较为接近。结论:这一体系能够在毕赤酵母表面高效地展示具有生物学功能的RBD,可用于抗新冠病毒RBD药物的高通量筛选和评价。  相似文献   

11.
蛋白质组学发展至今已日趋成熟,在生物医药相关领域研究中的应用显著增加,与之相关的样品制备技术、蛋白定量方法及先进的质谱仪器也得到了快速发展。网络药理学是近年来提出的新药发现新策略,是药理学的新兴分支学科,它从整体的角度探索药物与疾病的关联性,发现药物靶标,指导新药研发。将蛋白质组学技术应用于网络药理学研究,能使研究人员系统地预测和解释药物的作用,加速药物靶点的确认,从而设计多靶点药物或药物组合。综述了蛋白质组学技术的新近研究进展,并简单概述了其在网络药理学中的应用。  相似文献   

12.
There is an urgent need for new drugs for the chemotherapy of human African trypanosomiasis, Chagas disease and leishmaniasis. Progress has been made in the identification and characterization of novel drug targets for rational chemotherapy and inhibitors of trypanosomatid glycosomal enzymes, trypanothione reductase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, cysteine proteases and of the purine and sterol biosynthetic pathways. However, less attention has been paid to the pharmacological aspects of drug design or to the use of drug delivery systems in the chemotherapy of African trypanosomiasis and Chagas disease. A review of research on pharmacology and drug delivery systems shows that there are new opportunities for improving the chemotherapy of these diseases.  相似文献   

13.
Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT) is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug) were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation). We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin) were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems.  相似文献   

14.
Wang J  Li XJ 《生理科学进展》2011,42(4):241-245
The pharmaceutical industry has historically relied on particular families of 'druggable' proteins against which to develop compounds with desired actions. But proteins rarely function in isolation in and outside the cell; rather, proteins operate as part of highly interconnected cellular networks. Network pharmacology is an emerging area of pharmacology which utilizes network analysis of drug action. By considering drug actions in the context of the cellular networks, network analysis promises to greatly increase our knowledge of the mechanisms underlying the multiple actions of drugs. Network pharmacology can provide new approaches for drug discovery for complex diseases. This review introduced the recent progress of network pharmacology and its importance to understand the mechanism of drug actions and drug discovery.  相似文献   

15.

Background

Drugs can influence the whole biological system by targeting interaction reactions. The existence of interactions between drugs and network reactions suggests a potential way to discover targets. The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of drug-targets in current datasets are validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy. Currently, network pharmacology has used in identifying potential drug targets to predicting the spread of drug activity and greatly contributed toward the analysis of biological systems on a much larger scale than ever before.

Methods

In this article, we present a computational method to predict targets for rhein by exploring drug-reaction interactions. We have implemented a computational platform that integrates pathway, protein-protein interaction, differentially expressed genome and literature mining data to result in comprehensive networks for drug-target interaction. We used Cytoscape software for prediction rhein-target interactions, to facilitate the drug discovery pipeline.

Results

Results showed that 3 differentially expressed genes confirmed by Cytoscape as the central nodes of the complicated interaction network (99 nodes, 153 edges). Of note, we further observed that the identified targets were found to encompass a variety of biological processes related to immunity, cellular apoptosis, transport, signal transduction, cell growth and proliferation and metabolism.

Conclusions

Our findings demonstrate that network pharmacology can not only speed the wide identification of drug targets but also find new applications for the existing drugs. It also implies the significant contribution of network pharmacology to predict drug targets.  相似文献   

16.
Previous analysis of systems pharmacology has revealed a tendency of rational drug design in the pharmaceutical industry. The targets of new drugs tend to be close with the corresponding disease genes in the biological networks. However, it remains unclear whether the rational drug design introduces disadvantages, i.e. side effects. Therefore, it is important to dissect the relationship between rational drug design and drug side effects. Based on a recently released drug side effect database, SIDER, here we analyzed the relationship between drug side effects and the rational drug design. We revealed that the incidence drug side effect is significantly associated with the network distance of drug targets and diseases genes. Drugs with the distances of three or four have the smallest incidence of side effects, whereas drugs with the distances of more than four or smaller than three show significantly greater incidence of side effects. Furthermore, protein drugs and small molecule drugs show significant differences. Drugs hitting membrane targets and drugs hitting cytoplasm targets also show differences. Failure drugs because of severe side effects show smaller network distances than approved drugs. These results suggest that researchers should be prudent on rationalizing the drug design. Too small distances between drug targets and diseases genes may not always be advantageous for rational design for drug discovery.  相似文献   

17.

Background

The yeast-like fungi Pneumocystis, resides in lung alveoli and can cause a lethal infection known as Pneumocystis pneumonia (PCP) in hosts with impaired immune systems. Current therapies for PCP, such as trimethoprim-sulfamethoxazole (TMP-SMX), suffer from significant treatment failures and a multitude of serious side effects. Novel therapeutic approaches (i.e. newly developed drugs or novel combinations of available drugs) are needed to treat this potentially lethal opportunistic infection. Quantitative Systems Pharmacological (QSP) models promise to aid in the development of novel therapies by integrating available pharmacokinetic (PK) and pharmacodynamic (PD) knowledge to predict the effects of new treatment regimens.

Results

In this work, we constructed and independently validated PK modules of a number of drugs with available pharmacokinetic data. Characterized by simple structures and well constrained parameters, these PK modules could serve as a convenient tool to summarize and predict pharmacokinetic profiles. With the currently accepted hypotheses on the life stages of Pneumocystis, we also constructed a PD module to describe the proliferation, transformation, and death of Pneumocystis. By integrating the PK module and the PD module, the QSP model was constrained with observed levels of asci and trophic forms following treatments with multiple drugs. Furthermore, the temporal dynamics of the QSP model were validated with corresponding data.

Conclusions

We developed and validated a QSP model that integrates available data and promises to facilitate the design of future therapies against PCP.
  相似文献   

18.
It has been demonstrated that numerous proteins interact with drugs or their metabolites. Knowledge of these proteins is necessary to understand the mechanisms of drug action and human response. Progress in modern genetics, molecular biology, biochemistry and pharmacology is generating a comprehensive mechanistic understanding of drug-target interaction on the molecular level. This is valuable for researchers and pharmaceutical companies in their efforts to improve the efficacy of existing drugs and to discover new ones. Most recently, the integration of a systems biology approach into drug discovery processes calls for more holistic knowledge and easily accessible resources of the proteins that are important in drug action and human response. We have reviewed many publicly accessible internet resources of these proteins, according to their roles in drug action and human response, such as therapeutic effect, adverse reaction, absorption, distribution, metabolism and excretion.  相似文献   

19.
Inferring drug–drug interactions (DDIs) is an essential step in drug development and drug administration. Most computational inference methods focus on modeling drug pharmacokinetics, aiming at interactions that result from a common metabolizing enzyme (CYP). Here, we introduce a novel prediction method, INDI (INferring Drug Interactions), allowing the inference of both pharmacokinetic, CYP‐related DDIs (along with their associated CYPs) and pharmacodynamic, non‐CYP associated ones. On cross validation, it obtains high specificity and sensitivity levels (AUC (area under the receiver‐operating characteristic curve)?0.93). In application to the FDA adverse event reporting system, 53% of the drug events could potentially be connected to known (41%) or predicted (12%) DDIs. Additionally, INDI predicts the severity level of each DDI upon co‐administration of the involved drugs, suggesting that severe interactions are abundant in the clinical practice. Examining regularly taken medications by hospitalized patients, 18% of the patients receive known or predicted severely interacting drugs and are hospitalized more frequently. Access to INDI and its predictions is provided via a web tool at http://www.cs.tau.ac.il/~bnet/software/INDI , facilitating the inference and exploration of drug interactions and providing important leads for physicians and pharmaceutical companies alike.  相似文献   

20.
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号