首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclooxygenase (COX) and lipoxygenase (LOX) metabolic enzymes are the two main pathways for arachidonic acid (AA) metabolism. Emerging reports now indicate alterations of arachidonic acid metabolism with carcinogenesis and many COX and LOX inhibitors are being investigated as potential anticancer drugs. COX-2 is frequently expressed in many tumors, such as multiple myeloma (MM), a disorder in which malignant plasma cells accumulate, generally derived from one clone in the bone marrow, and is an independent predictor of poor outcome. 12-LOX, an important member of LOX, is proved to be expressed in MM cells. We hypothesize that COX-2 and 12-LOX represent an integrated system, COX-2/12-LOX dual pathway, which much more efficiently enhances the intracellular levels of unesterified arachidonate and regulates cell proliferative, apoptosis and pro-angiogenic potential of MM. The COX-2/12-LOX dual pathway may act as a novel potential strategy for treatment of tumors co-expressing COX-2 and 12-LOX, and the agents that can simultaneously inhibit the two enzymes of COX-2 and 12-LOX may present a novel and promising therapeutic approach to these tumors.  相似文献   

2.
In mammalian cells, reactive oxygen species (ROS) are produced via a variety of cellular oxidative processes, including the activity of NADPH oxidases (NOX), the activity of xanthine oxidases, the metabolism of arachidonic acid (AA) by lipoxygenases (LOX) and cyclooxygenases (COX), and the mitochondrial respiratory chain. Although NOX-generated ROS are the best characterized examples of ROS in mammalian cells, ROS are also generated by the oxidative metabolism (e.g., via LOX and COX) of AA that is released from the membrane phospholipids via the activity of cytosolic phospholipase A2 (cPLA2). Recently, growing evidence suggests that LOX- and COX-generated AA metabolites can induce ROS generation by stimulating NOX and that a potential signaling connection exits between the LOX/COX metabolites and NOX. In this review, we discuss the results of recent studies that report the generation of ROS by LOX metabolites, especially 5-LOX metabolites, via NOX stimulation. In particular, we have focused on the contribution of leukotriene B4 (LTB4), a potent bioactive eicosanoid that is derived from 5-LOX, and its receptors, BLT1 and BLT2, to NOX stimulation through a signaling mechanism that leads to ROS generation.  相似文献   

3.
In addition to their role in many vital cellular functions, arachidonic acid (AA) and its eicosanoid metabolites are involved in the pathogenesis of several diseases, including atherosclerosis and cancer. To understand the potential mechanisms by which these lipid molecules could influence the disease processes, particularly cardiovascular diseases, we studied AA's effects on vascular smooth muscle cell (VSMC) motility and the role of cAMP-response element binding protein-1 (CREB-1) in this process. AA exerted differential effects on VSMC motility; at lower doses, it stimulated motility, whereas at higher doses, it was inhibitory. AA-induced VSMC motility requires its conversion via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways. AA stimulated the phosphorylation of extracellular signal-regulated kinases (ERKs), Jun N-terminal kinases (JNKs), and p38 mitogen-activated protein kinase (p38MAPK) in a time-dependent manner, and blockade of these serine/threonine kinases significantly attenuated AA-induced VSMC motility. In addition, AA stimulated CREB-1 phosphorylation and activity in a manner that was also dependent on its metabolic conversion via the LOX and COX pathways and the activation of ERKs and p38MAPK but not JNKs. Furthermore, suppression of CREB-1 activation inhibited AA-induced VSMC motility. 15(S)-Hydroxyeicosatetraenoic acid and prostaglandin F2alpha, the 15-LOX and COX metabolites of AA, respectively, that are produced by VSMC at lower doses, were also found to stimulate motility in these cells. Together, these results suggest that AA induces VSMC motility by complex mechanisms involving its metabolism via the LOX and COX pathways as well as the ERK- and p38MAPK-dependent and JNK-independent activation of CREB-1.  相似文献   

4.
He C  Wu Y  Lai Y  Cai Z  Liu Y  Lai L 《Molecular bioSystems》2012,8(5):1585-1594
The arachidonic acid (AA) metabolic network produces key inflammatory mediators which have been considered as hallmark contributors in various inflammatory related diseases. Enzymes in this network, such as 5-lipoxygenase (5-LOX), cyclooxygenase (COX), leukotriene A(4) hydrolase (LTA4H) and prostaglandin E synthase (PGES), have been used as targets for anti-inflammatory drug discovery. Multi-target drugs and drug combinations have also been developed for this network. However, how the inhibitors alter the dynamics of metabolite production and which combinatorial target intervention solutions are better needs further exploration. We did a system based intervention analysis on the AA metabolic network. Using an LC-MS/MS method, we quantitatively studied the eicosanoid metabolites responses of AA metabolic network during stimulation of Sprague Dawley rat blood samples with the calcium ionophore. Our results indicate that inhibiting the upstream rather than the downstream target of 5-LOX pathway will simultaneously alter the AA metabolism to the COX pathway (and vice versa). Therefore, single-target inhibitors cannot control all the inflammatory mediators at the same time. We also suggest that in the case of multiple-target anti-inflammatory solutions, the combination of inhibitors of the downstream enzymes may have stronger inhibition efficiency and cause less side-effects compared to the other solutions. One therapeutic strategy, LTA4H/COX inhibition solution, was found promising for the intervention of inflammatory mediator biosynthesis and at the same time stimulating the production of anti-inflammatory agents.  相似文献   

5.
Arachidonic acid (AA) metabolism in the non-pregnant sheep uterus was studied in vitro using conventional chromatographic and HPLC techniques. High expression of both lipoxygenase (LOX) as well as cyclooxygenase (COX) enzymes and their activities was found in the uterine tissues. On incubation of uterine enymes with AA, the LOX products formed were identified as 5-hydroperoxyeicosatetraenoic acid (5-HPETE), 12- and 15-hydroxyeicosatetraenoic acids (12- and 15-HETEs), based on their separation on TLC and HPLC. By employing differential salt precipitation techniques, the LOXs generating products 5-HPETE (5-LOX), 12-HETE and 15-HETE (12- and 15-dual LOX) were isolated. Based on their analysis on TLC, the COX products formed were identified as prostaglandins - PGF2alpha and prostacyclin derivative 6-keto PGF1alpha. The study forms the first report on the comprehensive analysis on the metabolism of AA in sheep uterus in vitro via the LOX and COX pathways.  相似文献   

6.
In vitro evaluations of the selectivity of COX inhibitors are based on a great variety of experimental protocols. As a result, data available on cyclooxygenase (COX)-1/COX-2/5- lipoxygenase (LOX) selectivity of COX inhibitors lack consistency. We, therefore, performed a systematic analysis of the COX-1/COX-2/5-LOX selectivity of 14 compounds with selective COX inhibitory activity (Coxibs). The compounds belonged to different structural classes and were analyzed employing the well-recognized whole-blood assay. 5-LOX activity was also tested on isolated human polymorphonuclear leukocytes. Among COX inhibitors, celecoxib and ML-3000 (licofelone) inhibited 5-LOX in human neutrophils at micromolar ranges. Surprisingly, ML-3000 had no effect on 5-LOX product synthesis in whole-blood assay. In addition, we could show that inhibition of COX pathways did not increase the transformation of arachidonic acid by the 5-LOX pathway.  相似文献   

7.
Park S  Han SU  Lee KM  Park KH  Cho SW  Hahm KB 《Helicobacter》2007,12(1):49-58
BACKGROUND: Arachidonic acid metabolites have been considered as pivotal mediators in Helicobacter pylori-induced inflammatory response, which are mainly metabolized by two distinct enzymes: cyclooxygenase (COX) and lipoxygenase (LOX). While COX has become well known to play a key role in either carcinogenesis or inflammation related to H. pylori infection, little is known regarding the implication of LOX in H. pylori infection. In this study, we evaluated the roles of 5-LOX and its metabolites in H. pylori-induced host responses and further a potential beneficial action of specific LOX inhibitors against H. pylori infection. MATERIALS AND METHODS: Expressions of cytosolic phospholipase A(2) (cPLA(2)), COX-2, and 5-LOX after H. pylori infection were evaluated by immunofluorescence staining and Western blotting. Synthesis of LOX metabolites was measured with reversed-phase high-performance liquid chromatography. For analyzing the influence of 5-LOX inhibitors, nordihydroguaiaretic acid (NDGA) and geraniin, on H. pylori-induced inflammatory responses, RNase protection assay and RT-PCR were performed. RESULTS: H. pylori stimulated the translocation of cPLA(2) from cytoplasm to nucleus and increased the biosynthesis of hydroxyeicosatetraenoic acids (HETEs) as a predominant form of 5S-HETE in gastric epithelium. NDGA exerted a strong suppression activity of H. pylori-induced 5-LOX signaling. The administration of LOX inhibitors was related with down-expression of proinflammatory mediators such as interleukin-8 and tumor necrosis factor-alpha in both H. pylori-infected gastric epithelial cells and macrophage cells. CONCLUSION: LOX modulation with its specific inhibitors could impose significant anti-inflammatory responses after H. pylori infection, based on the fact that H. pylori infection provoked gastric inflammation through metabolizing arachidonic acid by the 5-LOX pathway.  相似文献   

8.
Drug molecules not only interact with specific targets, but also alter the state and function of the associated biological network. How to design drugs and evaluate their functions at the systems level becomes a key issue in highly efficient and low–side-effect drug design. The arachidonic acid metabolic network is the network that produces inflammatory mediators, in which several enzymes, including cyclooxygenase-2 (COX-2), have been used as targets for anti-inflammatory drugs. However, neither the century-old nonsteriodal anti-inflammatory drugs nor the recently revocatory Vioxx have provided completely successful anti-inflammatory treatment. To gain more insights into the anti-inflammatory drug design, the authors have studied the dynamic properties of arachidonic acid (AA) metabolic network in human polymorphous leukocytes. Metabolic flux, exogenous AA effects, and drug efficacy have been analyzed using ordinary differential equations. The flux balance in the AA network was found to be important for efficient and safe drug design. When only the 5-lipoxygenase (5-LOX) inhibitor was used, the flux of the COX-2 pathway was increased significantly, showing that a single functional inhibitor cannot effectively control the production of inflammatory mediators. When both COX-2 and 5-LOX were blocked, the production of inflammatory mediators could be completely shut off. The authors have also investigated the differences between a dual-functional COX-2 and 5-LOX inhibitor and a mixture of these two types of inhibitors. Their work provides an example for the integration of systems biology and drug discovery.  相似文献   

9.
Dietary arachidonic acid (AA) and eicosanoids influence neoplastic cell (NC) growth, differentiation and apoptosis. Plasma membrane fatty acid and cyclooxygenase (COX) and lipoxygenase (LOX) products were investigated in lung alveolar carcinoma cells from mice fed on different diets. Two groups were fed on a basic diet plus 6% of: corn oil (rich in 18:2n-6; CO) and on olein oil (rich in 18:1n-9; O), respectively. Control group (C) received commercial diet. NC fatty acids were analyzed by GLC, and apoptosis by flow cytometry and microscopy. In NC from CO group AA levels and LOX metabolites were increased, whereas COX metabolites decreased. NC from CO compared to O group diet showed a higher count of apoptosis and increased LOX:COX ratio. High levels of AA and decreased COX eicosanoids has been involved in anti-tumoral mechanisms by increasing tumor cell apoptosis. Present data emphasizes the implications of the dietary fatty acids on the neoplastic process in this tumoral model.  相似文献   

10.
11.
Wound healing involves multiple cell signaling pathways, including those regulating cell-extracellular matrix adhesion. Previous work demonstrated that arachidonate oxidation to leukotriene B4 (LTB4) by 5-lipoxygenase (5-LOX) signals fibroblast spreading on fibronectin, whereas cyclooxygenase-2 (COX-2)-catalyzed prostaglandin E2 (PGE2) formation facilitates subsequent cell migration. We investigated arachidonate metabolite signaling in wound closure of perturbed NIH/3T3 fibroblast monolayers. We found that during initial stages of wound closure (0–120 min), all wound margin cells spread into the wound gap perpendicularly to the wound long axis. At regular intervals, between 120 and 300 min, some cells elongated to project across the wound and meet cells from the opposite margin, forming distinct cell bridges spanning the wound that act as foci for later wound-directed cell migration and resulting closure. 5-LOX inhibition by AA861 demonstrated a required LTB4 signal for initial marginal cell spreading and bridge formation, both of which must precede wound-directed cell migration. 5-LOX inhibition effects were reversible by exogenous LTB4. Conversely, COX inhibition by indomethacin reduced directed migration into the wound but enhanced early cell spreading and bridge formation. Exogenous PGE2 reversed this effect and increased cell migration into the wound. The differential effects of arachidonic acid metabolites produced by LOX and COX were further confirmed with NIH/3T3 fibroblast cell lines constitutively over- and underexpressing the 5-LOX and COX-2 enzymes. These data suggest that two competing oxidative enzymes in arachidonate metabolism, LOX and COX, differentially regulate sequential aspects of fibroblast wound closure in vitro. leukotriene B4; prostaglandin E2; spreading; migration; bridges  相似文献   

12.
Dietary fats, which increase the risk of prostate cancer, stimulate release of intestinal neurotensin (NT), a growth-promoting peptide that enhances the formation of arachidonic acid metabolites in animal blood. This led us to use PC3 cells to examine the involvement of lipoxygenase (LOX) and cyclooxygenase (COX) in the growth effects of NT, including activation of EGF receptor (EGFR) and downstream kinases (ERK, AKT), and stimulation of DNA synthesis. NT and EGF enhanced [3H]-AA release, which was diminished by inhibitors of PLA2 (quinacrine), EGFR (AG1478) and MEK (U0126). NT and EGF phosphorylated EGFR, ERK and AKT, and stimulated DNA synthesis. These effects were diminished by PLA2 inhibitor (quinacrine), general LOX inhibitors (NDGA, ETYA), 5-LOX inhibitors (Rev 5901, AA861), 12-LOX inhibitor (baicalein) and FLAP inhibitor (MK886), while COX inhibitor (indomethacin) was without effect. Cells treated with NT and EGF showed an increase in 5-HETE levels by HPLC. PKC inhibitor (bisindolylmaleimide) blocked the stimulatory effects of NT, EGF and 5-HETE on DNA synthesis. We propose that 5-LOX activity is required for NT to stimulate growth via EGFR and its downstream kinases. The mechanism may involve an effect of 5-HETE on PKC, which is known to facilitate MEK-ERK activation. NT may enhance 5-HETE formation by Ca2+-mediated and ERK-mediated activation of DAG lipase and cPLA2. NT also upregulates cPLA2 and 5-LOX protein expression. Thus, the growth effects of NT and EGF involve a feed-forward system that requires cooperative interactions of the 5-LOX, ERK and AKT pathways.  相似文献   

13.
14.
Cytosolic and membrane-bound proteins of various stages of Oesophagostomum dentatum, the nodular worm of pigs, were investigated for the presence of lipoxygenases (LOX) and cyclooxygenases (COX) using polyclonal and monoclonal antibodies. Putative 12-LOX and 15-LOX, but not 5-LOX, were detected in both fractions of all developmental stages in the expected size range of 75 kDa, with an isoelectric point of 6.0-6.5. The protein could be precipitated with 50% ammonium sulfate, as described for mammalian LOX. An antibody directed against both COX isoforms and one against mammalian COX-2 detected proteins of approximately 70 kDa with an isoelectric point of 6.0-6.5 in the membrane-bound fractions of third-stage larvae and adults, but not in the fourth-stage larvae. Anti-COX-1 or more specific anti-COX-2 antibodies failed to detect proteins. The constitutive LOX expression supports the assumption that the metabolites of this enzyme previously detected in O. dentatum serve intrinsic functions, while the production of anti-inflammatory COX-products in the invasive and luminal stages of the parasite implies a possible role in host-parasite interactions.  相似文献   

15.
Eicosanoids, including the prostaglandins, leukotrienes, hydroxyeicosatetraenoic acids, epoxyeicosatetraenoic acids, and related compounds, are biosynthetic, bioactive mediators derived from arachidonic acid (AA), a 20:4(n-6) fatty acid. We have developed a comprehensive and sensitive mass spectral analysis to survey eicosanoid release from endotoxin-stimulated RAW 264.7 macrophage-like cells that is capable of detecting over 70 diverse eicosanoids and eicosanoid metabolites, should they be present. We now address the question: Are biologically significant eicosanoids being overlooked? Herein, we illustrate a general approach to diverse isotope metabolic profiling of labeled exogenous substrates using mass spectrometry (DIMPLES/MS), demonstrated for one substrate (AA) and its resultant products (eicosanoids). RAW cells were incubated in medium supplemented with deuterium-labeled AA. When the cells are stimulated, two sets of eicosanoids are produced, one from endogenous AA and the other from the supplemented (exogenous) deuterium-labeled form. This produces a signature mass spectral "doublet" pattern, allowing for a comprehensive and diverse eicosanoid search requiring no previous knowledge or assumptions as to what these species may be, in contrast to traditional methods. We report herein observing unexpected AA metabolites generated by the cells, some of which may constitute novel bioactive eicosanoids or eicosanoid inactivation metabolites, as well as demonstrating differing metabolic pathways for the generation of isomeric prostaglandins and potential peroxisome proliferator-activated receptor activators. Unexpectedly, we report observing a series of 1a, 1b-dihomologue prostaglandins, products of adrenic acid (22:4(n-6)), resulting from the two-carbon elongation of AA by the RAW cells.  相似文献   

16.
The arachidonic acid metabolizing enzymes, the cyclooxygenases (COXs) and lipoxygenases (LOXs), have been implicated in the development of a variety of cancers and numerous new therapeutic inhibitors are currently under investigation. However, given the interdependence of the two pathways, the effect of inhibiting one pathway with relatively selective agents can only be appreciated in the in vivo situation. Clearly then, because of their potential beneficial or deleterious effects, it is important to understand the nature and levels of the resulting arachidonic acid metabolites when treating patients with relatively selective inhibitor drugs. In this study, using reference COX-2, 5-LOX and dual COX-2/5-LOX inhibitors, we devised a protocol which permitted the simultaneous quantification of eicosanoid metabolites formed during stimulation of human peripheral venous blood samples with the calcium ionophore, A23187, in the absence and presence of lipopolysaccharide (LPS). Not surprisingly, the end products of both COX and LOX pathways were affected depending on the inhibitor, or combination of inhibitors, used and the concentrations of drug tested. In conclusion, the method described permits the rapid screening of novel compounds for potentially positive and/or negative effects upon the products of arachidonic acid metabolism.  相似文献   

17.
Oxylipins are oxygenated derivatives of polyunsaturated fatty acids, generated by COX, LOX and CYP enzymes, that regulate various aspects of endothelial cell physiology. Although 15-LOX and its products are positively associated with atherosclerosis, the relevant mechanisms have not been explored. The current study examined the effects of PD146176 (PD), a putative 15-LOX inhibitor, on EA.hy926 endothelial cell functions in the growing and confluent states. The effects of PD on endothelial cell oxylipin production (profiled by LC/MS/MS), cell viability, proliferation, eNOS activity, ICAM-1 and VE-cadherin levels were assessed. The contribution of signaling pathways relevant to endothelial function (p38 MAPK, Akt, PPARα) were also investigated. PD treatment for 30 min did not block formation of individual 15-LOX oxylipins, but 20 μM PD stimulated the accumulation of total LOX and COX products, while reducing several individual CYP products generated by epoxygenase. At 20 μM, the accumulated total oxylipins were primarily LOX-derived (86%) followed by COX (12%) and CYP (2%). PD altered cell functions by upregulating p38 MAPK and PPARα and downregulating Akt in a dose-dependent fashion. These observations suggest a link between PD-induced changes in oxylipins and altered endothelial cell functions via specific signaling pathways. In conclusion, the results of this study imply that PD does not function as a 15-LOX inhibitor in EA.hy926 endothelial cells, and instead inhibits CYP epoxygenase. These findings suggest that the cellular function changes induced by PD may be contingent upon its ability to modulate total oxylipin production, particularly by the LOX and CYP families.  相似文献   

18.
The cyclo-oxygenase (COX) and lipoxygenase (LOX) pathways belong to the eicosanoid synthesis pathway, a major component of the chronic inflammatory process occurring in Alzheimer's disease (AD). Clinical studies reported beneficial effects of COX inhibitors, but little is known about the involvement of LOXs in AD pathogenesis. beta-amyloid peptide (A beta) accumulation contributes to neurodegeneration in AD, but mechanisms underlying A beta toxicity have not been fully elucidated yet. Here, using an antisense oligonucleotide-based strategy, we show that blockade of 12-LOX expression prevents both A beta-induced apoptosis and overexpression of c-Jun, a factor required for the apoptotic process, in cortical neurons. Conversely, the 12-LOX metabolite, 12(S)-HETE (12(S)-hydroxy-(5Z, 8Z, 10E, 14Z)-eicosatetraenoic acid), promoted c-Jun-dependent apoptosis. Specificity of the 12-LOX involvement was further supported by the observed lack of contribution of 5-LOX in this process. These data indicate that blockade of 12-LOX expression disrupts a c-Jun-dependent apoptosis pathway, and suggest that 12-LOX may represent a new target for the treatment of AD.  相似文献   

19.
Numerous studies on human prostate cancer cell lines indicate a role for arachidonic acid (AA) and its oxidative metabolites in prostate cancer proliferation. The metabolism of AA by either the cyclooxygenase (COX) or the lipoxygenase (LOX) pathways generates eicosanoids involved in tumor promotion, progression, and metastasis. In particular, products of the 5-LOX pathway (including 5-HETE and 5-oxo-EET) have been implicated as potential 'survival factors' that may confer escape after androgen withdrawal therapy through fatty-acid (i.e., AA) drive. Potent natural dietary antioxidant compounds such as lycopene and lycophyll, with tissue tropism for human prostate, have been shown to be effective in ameliorating generalized oxidative stress at the DNA level. Suppressing the 5-LOX axis pharmacologically is also a promising avenue for intervention in human patients. The recently recognized direct interaction of the astaxanthin-based soft-drug Cardax to human 5-LOX with molecular modeling, and the downregulation of both 5-HETE and 5-oxo-EET in vivo in a murine peritonitis model, suggest that other important dietary carotenoids may share this enzyme regulatory feature. In the current study, the acyclic tomato carotene lycopene (in all-trans and 5-cis isomeric configurations) and its natural dihydroxy analog lycophyll (also present in tomato fruit) were subjected to molecular modeling calculations in order to investigate their predicted binding interaction(s) with human 5-LOX. Two bioactive oxidative metabolites of lycopene (4-methyl-8-oxo-2,4,6-nonatrienal and 2,7,11-trimethyl-tetradecahexaene-1,14-dial) were also investigated. A homology model of 5-LOX was constructed using 8-LOX and 15-LOX structures as templates. The model was validated by calculating the binding energy of Cardax to 5-LOX, which was demonstrated to be in good agreement with the published experimental data. Blind docking calculations were carried out in order to explore the possible binding sites of the carotenoids on 5-LOX, followed by focused docking to more accurately calculate the predicted energy of binding. Lycopene and lycophyll were predicted to bind with high affinity in the superficial cleft at the interface of the beta-barrel and the catalytic domain of 5-LOX (the 'cleavage site'). Carotenoid binding at this cleavage site provides the structural rationale by which polyenic compounds could modify the 5-LOX enzymatic function via an allosteric mechanism, or by radical scavenging in proximity to the active center. In addition, the two bioactive metabolites of lycopene were predicted to bind to the catalytic site with high affinity--therefore suggesting potential direct competitive inhibition of 5-LOX activity that should be shared by both lycopene and lycophyll after in vivo supplementation, particularly in the case of the dial metabolite.  相似文献   

20.
Thapsigargin (TG), an endoplasmic reticular (ER) Ca(2+)-ATPase inhibitor, can increase the intracellular calcium concentration and then deplete the TG-sensitive intracellular Ca(2+) pool. In this study, we investigated the effects of TG on cell viability and tumor necrosis factor-alpha (TNF-alpha) production in the murine macrophage RAW 264.7 cell line. We found that treatment with TG (10-800 nM) induced apoptosis in RAW 264.7 cells in a dose-dependent manner (IC(50), 200 nM). Lipopolysaccharide (LPS, 1 microg/ml) markedly potentiated low concentrations of TG (10-75 nM) in inducing apoptosis (IC(50), 20 nM) as revealed by the DNA ladder. Polymycin B (an LPS receptor antagonist) inhibited the cytotoxic effect induced by LPS plus TG. Although TG, A23187 and ionomycin all definitely increased intracellular Ca(2+) concentrations, neither A23187 nor ionomycin mimicked TG in inducing apoptotic events in LPS-activated RAW 264.7 cells. Moreover, the production of TNF-alpha induced by LPS was profoundly potentiated by TG but not by A23187 or by ionomycin. We conclude from these combined results that TG-sensitive ER Ca(2+) stores play a pivotal role in modulating cell viability and TNF-alpha production. The mutual potentiation between the LPS receptor signaling pathway and the depletion of ER Ca(2+) stores implies the existence of cross-talk between these multiregulatory mechanisms in this murine macrophage RAW 264.7 cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号