首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corpora lutea (CL) were collected from mares during early (Day 4-5), mid- (Day 8-9), and late (Day 12-13) dioestrus. Dispersed cell suspensions were obtained by enzymic digestion of tissue. Two distinct luteal cell populations (large and small) were observed. The proportion of small luteal cells significantly increased as age of CL advanced. Cells (2 x 10(6)) from CL which were incubated for 24 h secreted prostaglandin (PG) F, PGE-2 and 6-keto-PGF-1 alpha (the stable metabolite of prostacyclin). Higher concentrations of all PGs were produced by cells from CL at early dioestrus than from those at mid- or late dioestrus. The ratio of PGF:PGE-2 increased from 0.33 in CL of early dioestrus to 1.34 in CL of mid-dioestrus, whereas ratios of PGF:6-keto-PGF-1 alpha remained relatively constant (approximately 0.6). The ratio of PGE-2:6-keto-PGF-1 alpha from CL decreased between early (3.27) and mid-dioestrus (0.43). Addition of LH, dbcAMP, or ionophore to cell cultures did not consistently affect secretion of progesterone or PGs by luteal cells. It is suggested that prostaglandins produced by luteal cells of mares may contribute to control of luteal function and that the changing ratios of prostaglandins may be more important in controlling the lifespan of the CL than absolute concentrations of each.  相似文献   

2.
We determined changes in plasma hormone concentrations in gilts after treatment with a progesterone agonist, Altrenogest (AT), and determined the effect of exogenous gonadotropins on ovulation and plasma hormone concentrations during AT treatment. Twenty-nine cyclic gilts were fed 20 mg of AT/(day X gilt) once daily for 15 days starting on Days 10 to 14 of their estrous cycle. The 16th day after starting AT was designated Day 1. In Experiment 1, the preovulatory luteinizing hormone (LH) surge occurred 5.6 days after cessation of AT feeding. Plasma follicle-stimulating hormone (FSH) increased simultaneously with the LH surge and then increased further to a maximum 2 to 3 days later. In Experiment 2, each of 23 gilts was assigned to one of the following treatment groups: 1) no additional AT or injections, n = 4; 2) no additional AT, 1200 IU of pregnant mare's serum gonadotropin (PMSG) on Day 1, n = 4); 3) AT continued through Day 10 and PMSG on Day 1, n = 5, 4) AT continued through Day 10, PMSG on Day 1, and 500 IU of human chorionic gonadotropin (hCG) on Day 5, n = 5; or 5) AT continued through Day 10 and no injections, n = 5. Gilts were bled once daily on Days 1-3 and 9-11, bled twice daily on Days 4-8, and killed on Day 11 to recover ovaries. Termination of AT feeding or injection of PMSG increased plasma estrogen and decreased plasma FSH between Day 1 and Day 4; plasma estrogen profiles did not differ significantly among groups after injection of PMSG (Groups 2-4). Feeding AT blocked estrus, the LH surge, and ovulation after injection of PMSG (Group 3); hCG on Day 5 following PMSG on Day 1 caused ovulation (Group 4). Although AT did not block the action of PMSG and hCG at the ovary, AT did block the mechanisms by which estrogen triggers the preovulatory LH surge and estrus.  相似文献   

3.
Cycling adult female hamsters can be induced to mate and ovulate 24 h early by the injection of 20 IU human chorionic gonadotropin (hCG) at 1500 h on Day 3 (day before proestrus), but pregnancy is not established. Although there is evidence of decreased sperm transport in precociously ovulated females, this does not appear to be the primary cause of infertility. Reduced size and vascularity of corpora lutea (CL) in treated females suggests incomplete or failed CL activation. Control and hCG-treated females were killed by exsanguination under ether anesthesia at intervals for the first 5 days after mating. Serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin, estradiol, and progesterone were measured by radioimmunoassay. Luteinizing hormone in treated animals was very high at 2200 h on Day 1 after mating (31 h after the hCG injection), due to endogenous release, and dropped below control levels thereafter. Follicle-stimulating hormone, by contrast, was significantly lower than controls at 2200 h on Day 1 and remained low until 2200 h on Day 3 after mating. Prolactin in treated animals was not different from that in controls, except for 1000 h on Day 4, when it showed a significant dip. Estradiol in treated animals was significantly higher than in controls at 2200 h on Day 1 (when LH was also high and FSH was low), and remained high at 1000 h and 2200 h on Day 2, dropping thereafter to control levels. Progesterone was initially at control levels but had dropped significantly by 1000 h on Day 2 and remained low for the next 24 h. These results suggest that pregnancy failure is due to inadequate activation of corpora lutea. This may be due to: 1) immaturity of follicles at the time of ovulation; 2) inappropriate timing of preovulatory events; 3) the luteolytic effects of high levels of LH or estradiol or both; 4) the low level of FSH in the early stages of corpus luteum development; or 5) a combination of the above. Abnormalities of prolactin secretion were not investigated in detail but cannot be ruled out at this time.  相似文献   

4.
We evaluated the efficiency of replacing GnRH with LH in the ovulation synchronization protocol in buffaloes. Buffaloes received GnRH on Day 0, (Buserelin; Conceptal, 20 microg), PGF2alpha (Luprostiol; Prosolvin, 15 mg) on Day 7 and GnRH (Buserelin; Conceptal, 10 microg; Group 1) or porcine LH (LH; Lutropin-V, 12.5 mg; Group 2) on Day 9. In Experiment 1, we studied the follicular dynamics of 30 buffaloes (Group 1, n = 15 and Group 2, n = 15). We performed ultrasonography every 12 h from Days 0 to 2, then on Day 7 and then every 6 h from the time of GnRH or LH treatment (Day 9) until the time of ovulation. All females not ovulating by 48 h after the second GnRH or LH injection were considered as nonresponders. In Experiment 2, we evaluated 305 buffaloes (Group 1, n = 154; Group 2, n = 151), using the same two treatments studied in Experiment 1. We also recorded and evaluated aspects like parity, lactational status, the presence of mucus, and uterine tone at the time of artificial insemination (Al). In Experiment 1, ovulation rate after the first GnRH was 86.6% (26/30). Ovulation rates were 93.3% (14/15; Group 1) after the second dose of GnRH and 93.3% (14/15) after LH (Group 2). Ovulation occurred 36.4+/-10.4 h after the first GnRH. The interval for treatment to ovulation was 26.5+/-9.6 h for buffaloes treated with GnRH (Group 1) and 24.4+/-7.9 h for buffaloes treated with LH (Group 2); the time of ovulation did not differ statistically between the two groups (GnRH versus LH; P > 0.05). In Experiment 2, conception rates of the animals AI in the field were 56.5% (Group 1) and 64.2% (Group 2), respectively (P = 0.08). The response to the treatment with LH was not different to the treatment with GnRH; however, multiparous buffaloes had higher conception rates than the primiparous buffaloes in both groups (P > 0.05). Buffaloes with mucus at the time of AI in Group 2 had higher conception rates than the buffaloes that had mucus in Group 1 (P < 0.05). Uterine tone and lactational status did not influence conception rates (P > 0.05). In summary, the results showed that both treatments resulted in synchronization of ovulation and acceptable conception rates. Therefore, the exogenous injection of LH can substitute the GnRH injections in the Ovsynch program in buffaloes.  相似文献   

5.
The influence of ovariectomy and steroid replacement on naloxone-induced changes in pulsatile secretion of luteinizing hormone (LH) in the female rabbit was examined. Blood samples were taken every 5 min through an indwelling catheter in the rabbit ear artery, and plasma was stored until assayed for LH by established radioimmunoassay procedures. In the intact animal, saline injection had no effect on LH secretion. Although naloxone (10 mg/kg) caused a 7-fold increase in mean LH pulse amplitude by 30 min after injection, this increase was not statistically significant because 5 of 11 animals did not respond. In animals ovariectomized 48 h previously, naloxone significantly increased LH concentration by 194% at 23 min after injection. When long-term ovariectomized rabbits were treated with estradiol benzoate and then were given naloxone, no significant increase in LH was observed, although many animals did respond. Treatment of long-term ovariectomized rabbits with 1 microgram estradiol benzoate and 100 micrograms progesterone or 1 mg testosterone propionate on Days 1 and 3 and naloxone on Day 4 resulted in a significant increase in LH 19-24 min later. Although there was an increase in pulse amplitude, no change was detected in pulse frequency after naloxone. These data suggest that the hypothesis of steroid-opioid coupling in the control of LH secretion is not applicable to the female rabbit.  相似文献   

6.
The release of LH from the pituitary of lactating ewes was studied. In Exp. 1, ewes were injected with 50 microng oestradiol benzoate (OB), 2-0 mg testosterone propionate (TP) or oil only (control) on days 5, 10, or 20 after lambing. LH was measured in peripheral plasma samples obtained 20-38 h after treatment, and the ovulations were recorded. The number of ewes in which an LH release was detected, and the amount released, declined between Day 5 and 20 after OB treatment but increased after TP treatment. The releases of LH were not always accompanied by ovulation and the incidence of ovulation was higher in ewes treated with TP. In Exp. 2, lactating ewes were injected with 1 or 5 (at 2-h intervals) doses of 50 microng Gn-RH, on Days 12 or 25 after lambing. LH was measured in peripheral plasma samples collected every 2 h for 10 h and every 3 h for a further 70 h. Release of LH occurred in all ewes, the amount being greater in ewes receiving multiple injections and in ewes treated on Day 25. The incidence of ovulation was higher after treatment on Day 25. Multiple injections of Gn-RH appeared to reduce the incidence of abnormal corpora lutea.  相似文献   

7.
The estrous cycles of 23 Holstein heifers were synchronized with three prostaglandin F2α (PG) injections at 0600 h 11 d apart, designated as Days ?11, 0 and 11. Twelve of the animals were randomly assigned to receive no solid food (Group F) from Day 6 to 14, while the other animals remained on full feed to serve as controls (Group C). Jugular blood samples were collected at 6-h intervals beginning with PG injection at 0600 h on Day 0 until 1800 h on Day 4 and at 0600, 1200 and 1700 h on Day 8 through 10. Samples were collected again at 6-h intervals from PG Day 11 (0600 h) until 1800 h on Day 15. Period 1 was defined as those samples collected from Day 0 through 4.5, Period 2 from Day 7 through 10, Period 3 from Day 11 through 14.25, and Period 4 from Day 14.5 through 15. Plasma growth hormone concentrations were increased (P<0.01) in F as compared with C animals during Periods 2, 3 and 4. Plasma concentrations of prolactin (P<0.01) were decreased in F as compared with C animals during Periods 2 and 3. Plasma urea concentrations were increased (P<0.01) in F as compared with C animals during the first 3 d of the fast (Period 2) but were decreased (P<0.01) during the remainder of the experiment (Periods 3 and 4). Thus, fasting was effective in altering several metabolic parameters. Although plasma progesterone and luteinizing hormone (LH) concentrations remained similar (P>0.05) between F and C animals, plasma estradiol-17β concentrations decreased in F as compared with C animals during Periods 2, 3 and 4. No differences (P>0.05) between F and C animals were found in duration to LH peak after PG injection, estrous behavior, or pregnancy rates. Results from this study indicate that fasting reduced plasma estradiol-17β concentrations during estrus but did not alter occurrence of estrus or pregnancy rate.  相似文献   

8.
Administration of charcoal-treated bovine follicular fluid to Damline ewes twice daily (i.v.) from Days 1 to 11 of the luteal phase (Day 0 = oestrus) resulted in a delay in the onset of oestrous behaviour and a significant increase in ovulation rate following cloprostenol-induced luteolysis on Day 12. During follicular fluid treatment plasma levels of FSH in samples withdrawn just before injection of follicular fluid at 09:00 h (i.e. 16 h after previous injection of follicular fluid) were initially suppressed, but by Day 8 of treatment had returned to those of controls. However, the injection of follicular fluid at 09:00 h on Day 8 still caused a significant suppression of FSH as measured during a 6-h sampling period. Basal LH levels were higher throughout treatment due to a significant increase in amplitude and frequency of pulsatile secretion. After cloprostenol-induced luteal regression at the end of treatment on Day 12, plasma levels of FSH increased 4-fold over those of controls and remained higher until the preovulatory LH surge. While LH concentrations were initially higher relative to those of controls, there was no significant difference in the amount of LH released immediately before or during the preovulatory surge. These results suggest that the increase in ovulation rate observed during treatment with bovine follicular fluid is associated with the change in the pattern of gonadotrophin secretion in the luteal and follicular phases of the cycle.  相似文献   

9.
Hormonal changes, behaviour, ovulation and fertility were examined in response to coitus at two different times during oestrus in the female domestic cat housed in conditions of natural light (N = 13). On Day 2 or Day 4/5 of oestrus females were allowed 1 copulation in 15 min (single matings) or 2-3 copulations in 30 min (multiple matings). Plasma LH, oestradiol-17 beta and progesterone concentrations during the 24-h period after coitus were measured by radioimmunoassay; ovulation was assumed to have occurred if progesterone values were elevated 7-30 days after coitus. With the exception of 2 out of 3 animals receiving single matings on Day 2 of oestrus, all animals showed subsequent elevated progesterone values. Females receiving multiple matings had significantly greater releases of LH as measured by the area under the curve than those receiving single matings. There was significantly greater variability in the LH response of queens on Day 2 of oestrus compared to those on Day 4/5 for peak values and area under the curve; the only failure in release of LH was in queens on Day 2. Oestradiol levels did not differ significantly between Day 2 and Day 4/5 of oestrus. Progesterone values remained less than 1 ng/ml for 24 h after coitus. Both LH peak values and area under the curve were significantly greater for animals that became pregnant. There were also significant differences in coital behaviour between queens on Day 2 and those on Day 4/5 of oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In Exp. 1, PMSG was injected to 26-day-old prepubertal rats to induce ovulations. On Day 2 (2 days later, the equivalent of the day of pro-oestrus) they received at 08:00 h 5 mg hydroxyflutamide or vehicle and at 12:00 h 2 mg progesterone or testosterone or vehicle. Animals were killed at 18:00 h on Day 2 or at 09:00 h on Day 3. Progesterone but not testosterone restored the preovulatory LH surge and ovulation in hydroxyflutamide-treated rats. In Exp. 2, 2 mg progesterone or testosterone were injected between 10:30 and 11:00 h on Day 2, to advance the pro-oestrous LH surge and ovulation in PMSG-primed prepubertal rats. Injection of hydroxyflutamide abolished the ability of progesterone to advance the LH surge or ovulation. Testosterone did not induce the advancement of LH surge or ovulation. In Exp. 3, ovariectomized prepubertal rats implanted with oestradiol-17 beta showed significantly (P less than 0.01) elevated serum LH concentrations at 18:00 h over those observed at 10:00 h. Progesterone injection to these animals further elevated the serum LH concentrations at 18:00 h, in a dose-dependent manner, with maximal values resulting from 1 mg progesterone. Hydroxyflutamide treatment significantly (P less than 0.003) reduced the serum LH values in rats receiving 0-1 mg progesterone but 2 mg progesterone were able to overcome this inhibition. It is concluded that progesterone but not testosterone can reverse the effects of hydroxyflutamide on the preovulatory LH surge and ovulation. It appears that hydroxyflutamide may interfere with progesterone action in induction of the LH surge, suggesting a hitherto undescribed anti-progestagenic action of hydroxyflutamide.  相似文献   

11.
This study investigates the interaction between the effect of epinephrine intracerebroventricular (icv) injection and LH on the progesterone concentration in ovarian vein blood (Po) in vivo, and also, on the release of ovarian progesterone and androstenedione in vitro, in rats on dioestrus day 2. When 2 mg ovine LH were injected in vein (i.v.), Po increased reaching 120+/-12.2 and 151+/-17.5 ng ml(-1) at 22 and 25 min, respectively. Another group of rats was injected intracerebroventricular with 5 microgram epinephrine at time zero, and with 2 mg ovine LH i.v. 3 min later. This time Po decreased during the first 3 min, then increased, reaching 64+/-7.1 ng ml(-1) at 25 min, lower than the Po obtained 22 min after LH i.v. injection only (P<0.01). Moreover, rats were injected i.v. with 2 mg ovine LH at time zero, and 7 min later with epinephrine intracerebroventricular. Po increased during the first 7 min, decreased until the 13th minute and reached 70+/-8.9 ng ml(-1) at 25 min, lower than the Po obtained 25 min after LH i.v. injection only (P<0.01). In other experience, rats with one (either right or left) superior ovarian nerve transected (SON-t), were injected intracerebroventricular with epinephrine. Five minutes later, the ovaries were removed and incubated in vitro with LH. Both ovaries (right or left) in which the SON was intact at time of epinephrine i. c.v. injection, showed a reduction of progesterone and androstenedione released in vitro (P<0.05). These results suggest that, on dioestrus day 2, the central adrenergic stimulus competes with LH in the release of ovarian progesterone. Also, the neural input that arrives at the ovary through the SON would antagonize the ovarian progesterone and androstenedione response to LH.  相似文献   

12.
In cyclic hamsters, exogenous progesterone (100 micrograms) administered s.c. at 09:00 h on the day of dioestrus II reduced prostaglandin (PG) E and 6-keto PGF-1 alpha but not PGF concentrations in preovulatory follicles measured at 09:00 h of pro-oestrus. The injection of 10 micrograms ovine LH (NIADDK-oLH-25) concurrently with 100 micrograms progesterone on dioestrus II prevented the decline in follicular PGE and 6-keto PGF-1 alpha values. Administration of LH alone did not significantly alter follicular PG concentrations. Inhibition of follicular PGE accumulation by progesterone was due to a decline in granulosa PGE concentration and not thecal PGE. Progesterone administration also reduced follicular oestradiol concentrations. Administration of oestradiol-17-cyclopentanepropionate (ECP) (10 micrograms) with progesterone did not prevent the decline in follicular PGE and 6-keto PGF-1 alpha but did increase follicular PGF concentrations. However, ECP given alone on dioestrus II reduced follicular PGE and increased PGF concentrations in preovulatory follicles on pro-oestrus. It is concluded that exogenous progesterone administered on dioestrus II inhibits granulosa PGE and 6-keto PGF-1 alpha accumulation in preovulatory follicles, probably by reducing serum LH concentrations, and that the granulosa cells, which are LH-dependent, are a major source of follicular PGE.  相似文献   

13.
Two experiments were conducted to evaluate effects of gonadotropin-releasing hormone (GnRH) on the function of the bovine corpus luteum during the estrous cycle. In Experiment 1, 10 beef heifers were assigned randomly into two groups; each heifer served as her own control. Heifers in Group I (n = 5) were injected i.v. with vehicle (saline) on Day 2 of the cycle (Day 0 = day of estrus) followed by an i.v. injection of 100 micrograms GnRH on Day 2 of the subsequent estrous cycle. Group II (n = 5) heifers were treated similarly except injections were given on Day 10 of the estrous cycle. All heifers were bled via the jugular vein at 15 min intervals beginning 30 min prior to injection and for 3 h after injection. Blood samples were also taken on alternate days after injection through Day 16 of the cycle. Gonadotropin-releasing hormone caused a significant release of luteinizing hormone (LH) on both treatment days with the peak occurring at 15 to 30 min postinjection. Treatment with GnRH on either Day 2 or 10 caused a reduction in serum progesterone levels on Days 12, 14 and 16 of the cycle (Group I, control 3.99, 3.97; 4.07 vs. treated 2.63, 3.45, 2.87; Group II, control 3.18, 3.82, 4.13 vs. treated 2.50, 2.82, 3.17 ng/ml, respectively; common SE = 0.24 p less than 0.03). Length of the estrous cycle did not differ between groups (Group I, control 20.7 vs. treated 20.9; Group II, control 20.7 vs. treated 21.1 days, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The synchrony of ovulation was examined in superstimulated heifers that had a downregulated pituitary gland and which were induced to ovulate by injection of exogenous LH. The pituitary was downregulated and desensitized to GnRH by treatment with the GnRH agonist deslorelin. Nulliparous heifers (3.5 yr old) at random stages of the estrous cycle were assigned to 1 of 3 groups, and on Day -7 received the following treatments: Group 1 (control, n = 8), 1 norgestomet ear implant; Group 2 (GnRH agonist, n = 8); Group 3 (GnRH agonist-LH protocol, n = 8), 2 deslorelin ear implants. Ovarian follicle growth in all heifers was superstimulated with twice-daily intramuscular injections of FSH (Folltropin-V): Day O, 40 mg (80 mg total dose); Day 1, 30 mg; Day 2; 20 mg; Day 3, 10 mg. On Day 2, all heifers were given a luteolytic dose of PGF (7 A.M.), Norgestomet implants were removed from heifers in Group 1 (6 P.M.). Heifers in Group 3 were given an injection of 25 mg, i.m. porcine LH (Lutropin) on Day 4 (4 P.M.). Ovarian follicle status was monitored at 8-h intervals from Day 3 (8 A.M.) to Day 6 (4 P.M.) using an Aloka Echo Camera and 7.5 MHz transducer. Heifers in Groups 2 and 3 exhibited estrus earlier (P < 0.05) than heifers in Group 1. Heifers in Group 2 did not have a preovulatory LH surge and they did not ovulate. Individual control heifers in Group 1 ovulated between 12 A.M. on Day 5 and 8 A.M. on Day 6. Heifers with deslorelin implants and injected with LH in Group 3 ovulated between 4 P.M. on Day 5 and 8 A.M. on Day 6. It was confirmed that superstimulated heifers with GnRH agonist implants can be induced to ovulate with LH. It was also demonstrated that ovulation is closely synchronized after injection of LH. Thus, a single, fixed-time insemination schedule could be used in a GnRH agonist-LH superovulation protocol, with significant practical and economic advantages for superovulation and embryo transfer programs.  相似文献   

15.
J Roos  C Lazarus  C Aron 《Endokrinologie》1980,75(3):257-268
The present study was undertaken to investigate the mechanisms of the stress-related ovulatory effects of hemicastration in the rat. Previous work (Roos et al., 1976) had shown that ovulation induced by unilateral ovariectomy (ULO) was suppressed in adrenalectomized females when ULO was performed on dioestrus III at 10--11 h in 5-day cyclic rats. Using the same experimental schema an increase in blood progesterone within 1 to 4 hours after ULO has been found to be present in adrenal intact females and suppressed in adrenalectomized rats. PB treatment (30 mg/kg, i.p.) concomitant with ULO at 10--11 h on dioestrus III significantly decreased the number of ovulating females without preventing blood progesterone concentration to increase at 12--13 h. A partial blockade of ovulation resulted from PB injection at 13 or 18 h. The ovulatory effects of ULO observed in females injected with PB at 23 h on dioestrus III or at 5 h on prooestrus were identical to those observed in hemiovariectomized non PB treated females. Only a small proportion of hemiovariectomized females displayed an LH release at 15--16 h and 17.30 h--18.30 h on dioestrus III. In contrast a significant FSH release was observed in this interval of time following ULO. Microscopic examination of the ovaries on prooestrus at either 11 h or 16 h revealed the presence of corpora lutea with morphological features corresponding to very different stages of development. We can conclude that progesterone of adrenal origin constituted the trigger of ovulation and caused LH-release during a time period extending from 13 h to 23 h on dioestrus III following ULO in the rat.  相似文献   

16.
The effects of third ventricular injection of beta-endorphin (beta-EP) on spontaneous, brain stimulation-induced and estrogen-induced LH surges were studied in the adult female rat. It was found that beta-EP blocked the preovulatory surge of LH release and ovulation, while it did not affect LH release in response to LH-RH injection. The site of the beta-EP blockade of ovulation was proved to be in the brain. Beta-EP completely blocked ovulatory LH release induced by the electrochemical stimulation of the medial amygdaloid nucleus and medial septum-diagonal band of Broca, but failed to block ovulation due to the stimulation of the medial preoptic area (MPO) or median eminence, though serum LH levels after the MPO stimulation were inhibited by beta-EP. In the spayed rats treated with estradiol benzoate (EB) on Day 1 and 4 of experiment, beta-EP given on Day 5 blocked the LH surge that normally occurred on that day and led to a compensatory surge of LH on the following day. Moreover, the LH surge on Day 5 was inhibited by beta-EP given either on Day 1 or Day 4. Present data suggest that beta-EP may act in inhibiting the preovulatory LH surges not only by suppressing the preoptic-tuberal LH-RH activities but also by affecting the initiation and development of stimulatory feedback of estrogen in the central nervous system.  相似文献   

17.
Brahman cows (n = 54) and heifers (n = 18) were randomly allotted by calving date, sex of calf and age to one of four treatment groups. Group 1 received no treatment (control), Group 2 received 5 mg alfaprostol (AP) i.m. on Day 21 postpartum, Group 3 received 5 mg AP i.m. on Day 32 postpartum and Group 4 received 5 mg AP i.m. on both Days 21 and 32 postpartum. Blood samples were collected via tail vessel puncture at 30 min-intervals for 8 h from half the animals in each group on Days 21 and 32 postpartum, with AP injection administered 2 h after sampling had begun. All cows were bled at weekly intervals. Samples were processed to yield serum and stored at -20 degrees C until assayed for luteinizing hormone (LH) or progesterone (P(4)). All cattle were maintained with epididymectomized marker bulls and were artificially inseminated (A.I.) at first estrus. Serum P(4) was below 1 ng/ml prior to AP treatment in all animals and did not differ (P > 0.10) between treatments. Alfaprostol treatment affected mean postpartum interval (from parturition to return to standing estrus and subsequent corpus luteum formation with serum progesterone concentrations > 1 ng/ml; P < 0.08). The control group (84.8 +/- 7.9 d) did not differ from Group 2 (86.3 +/- 11.1 d) or Group 3 (66.7 +/- 5.5 d) but did differ (P < 0.09) from Group 4 (65.1 +/- 6.4 d). Cattle injected on Day 32 had a shorter (P < 0.01) postpartum interval than those not receiving treatment on that day (65.9 +/- 4.2 vs 85.7 +/- 6.8 d). Pregnancy rate was affected (P < 0.05) by AP treatment. The control group (72.2%) did not differ (P > 0.10) from any group but, Group 2 (50.0%) was lower (P < 0.04) than Group 3 (83.3%) and (P < 0.02) Group 4 (88.9%). Cattle treated on Day 32 (Groups 3 and 4) had a higher (P < 0.02) pregnancy rate (86.1%) than those not treated on Day 32 (Groups 1 and 2; 61.1%). Serum LH was affected by day (P < 0.0003) and treatment by day (P < 0.07) but not by time (P > 0.10). Treatment Group 3 (P < 0.08) and Group 4 (P < 0.0003) mean LH concentrations differed between Days 21 and 32 postpartum. Cattle receiving AP treatment on Day 32 postpartum had a higher (P < 0.04) cumulative frequency of return to estrus by 100 days postpartum than nontreated cattle.  相似文献   

18.
Eighteen lactating Holstein cows were randomly divided into three groups of equal size. Six cows were not superovulated; the remaining cows were superovulated using either FSH-P or PMSG beginning on Day 12 of the estrous cycle (day of ovulation = Day 0). Animals treated with FSH-P were injected intramuscularly (i.m.) with 4 mg FSH-P every 12 h for 5 d. PMSG was administered i.m. as a single injection of 2350 IU. Cloprostenol (PG, 500 ug) was injected i.m. 56 and 72 h after commencement of treatment and at the same time in the cycle of controls. All cows were inseminated 56, 68 and 80 h after the first PG injection. Blood samples (5 ml) were collected daily and every 15 min for a period of 9 h on Days -1, 0, 2, 8 and 10, with continuous blood sampling at 15-min intervals during Days 3 to 6. Ovulation rate was 27.7 +/- 8.22 in animals treated with PMSG, and 8.0 +/- 3.2 embryos per donor were recovered. In the FSH group, ovulation rate was 8.3 +/- 1.48 and 3.0 +/- 1.1 embryos per donor were recovered. Progesterone concentrations were similar in all three groups until the onset of the LH surge, when progesterone concentrations were greater (P<0.05) in animals of the PMSG group. After the preovulatory LH surge, concentrations of progesterone started increasing earlier (44 h) in cows treated with PMSG, followed by FSH-treated cows (76 h) and controls (99 h). The LH surge occurred earlier (P<0.05) in PMSG-treated cows (37 h after first PG treatment), than in animals treated with FSH-P (52 h) or controls (82 h). In animals treated with FSH-P, the magnitude of the preovulatory LH surge (24.2 +/- 1.02 ng/ml) was higher (P<0.05) than in the other two groups (PMSG = 17.1 +/- 2.04 ng/ml; control, 16.7 +/- 1.24 ng/ml). Superovulation with FSH-P or PMSG did not affect either mean basal LH concentration, frequency or amplitude of LH pulses during Days -1, 0, 2, 3, presurge periods, or Days 8 and 10 post-treatment. At ovariectomy, 8 d post-estrus, more follicles > 10 mm diam. were observed in the ovaries after treatment with PMSG (8.5 +/- 5.66) than after treatment with FSH-P (0.7 +/- 0.42) (P<0.05). Maximum concentrations of PMSG were measured 24 h after administration. Following this peak, PMSG levels declined with two slopes, with half-lives of 36 h and 370 h.  相似文献   

19.
Three experiments were conducted on Texel ewes to study the influence of prostaglandin F(2alpha) (PGF(2alpha)), prolactin (PRL), estradiol (E(2)), and gonadotrophin releasing hormone (GnRH) on postpartum reproductive activity. In Experiment 1, oral administration of indomethacin (25 to 50 mg/day/ewe) from Day 3 post partum to the first detected estrus inhibited plasma 13, 14-dihydro-15-keto, PGF(2alpha) (PGFM) concentrations (P < 0.0001). This treatment resulted in an earlier rise in the frequency and amplitude of luteinizing hormone (LH) pulses and a resumption of estrous behavior (P < 0.05), while ovarian activity estimated by progesterone (P(4)) concentrations resumed to the same extent in treated ewes and controls. Bromocriptine treatment (2.5 mg/day/ewe) reduced plasma PRL levels (P < 0.0001) but had no effect on ovarian activity as evidenced by P(4) and resumption of estrus or on either the frequency or amplitude of the LH pulse. In Experiment 2, a single injection of GnRH agonist (42 mcg of buserelin/ewe) on Day 16 post partum resulted in an abrupt elevation of plasma LH concentrations; mean LH values were 18 to 27 times higher when compared with those of the control ewes. Two days after this treatment, ovulations occurred in 5 of the treated ewes and in 2 of the control ewes. This induced ovarian activity was not associated with estrous behavior; however, after an adequate subsequent luteal phase all the treated ewes displayed estrus, the resumption of estrus thus being earlier in treated than in control ewes (P < 0.01). In Experiment 3, E(2) supplementation from Day 16 to Day 28 post partum increased the number of LH pulses per 6 hours in suckling ewes (P < 0.05) and induced earlier resumption of estrus in dry ewes but not in suckling ewes (P < 0.01). Luteal function was detected about 5 and 8 days after the insertion of E(2) implants in 4 dry ewes and in 2 suckling ewes, respectively.  相似文献   

20.
Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n=12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38h after the first PGF2alpha injection, blood sampling and ovarian ultrasonography took place every 4h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7+/-4.9 and 72.3+/-3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin), total dose=200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2alpha, to minimize stress, only seven blood samples were collected at 4h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6+/-1.6 and 59.5+/-1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0+/-2.6 ng/ml (mean+/-S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号