首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have demonstrated that dietary fish oils rich in eicosapentaenoic acid (C20:5,omega 3) lower the content of arachidonic acid and its metabolites in plasma and tissue phospholipids. The present study examined the fatty acid composition of cholesterol ester and triacylglycerol fractions from plasma and livers of rats fed diets enriched with saturated fatty acids (beef tallow), alpha-linolenic acid (linseed oil) or eicosapentaenoic acid (fish oil). Feeding diets containing linseed oil or fish oil for 28 days increased arachidonic acid (C20:4,omega 6) levels in the cholesterol ester fraction of liver and in the triacylglycerol fraction of the plasma lipids. Plasma cholesterol esters were depleted of C20:4,omega 6 after feeding of the diet containing either linseed oil or fish oil. The changes in C20:4,omega 6 content cannot be explained by alterations in cholesterol ester or triacylglycerol pools of plasma and liver. These results suggest that the decrease in phospholipid C20:4,omega 6 content generally observed after fish oil consumption may be partly due to a shift of C20:4,omega 6 from phospholipid to the triacylglycerol and/or cholesterol ester pools in the same tissue. Triacylglycerols and cholesterol esters may therefore play a buffering role in the homeostatic maintenance of tissue phospholipid levels of arachidonic acid.  相似文献   

2.
A method utilizing electrospray ionization coupled with tandem mass spectrometry was developed as a facile and rapid method to identify and quantify lipid remodeling in vivo. Electrospray/tandem mass spectrometric analyses were performed on lipids isolated from liver tissue and resident peritoneal cells from essential fatty acid sufficient and deficient mice. Essential fatty acid deficiency was chosen as the paradigm to evaluate the methodology because it epitomizes the most extreme dietary means of altering fatty acid composition of virtually all cellular lipid species. Qualitative and quantitative changes were measured in the phospholipid and cholesterol ester species directly in the chloroform/methanol lipid extract without any prior chromatographic separation. Lipid remodeling in liver and peritoneal cells from essential fatty acid deficient mice was qualitatively similar in cholesterol ester, phosphatidylcholine, and phosphatidylethanolamine. The monoenoic fatty acids palmitoleic acid (16:1 n-7) and oleic acid (18:1 n-9) were increased markedly, whereas all n-6 and n-3 polyunsaturated fatty acids were nearly depleted in phospholipid and cholesterol ester species. The n-9 polyunsaturated fatty acid surrogate, Mead acid (20:3 n-9), substituted for arachidonic acid (20:4 n-6) and docosahexaenoic acid (22:6 n-3) in phospholipid, but not in cholesterol ester, species. Another notable difference was that adrenic acid (22:4 n-6) and docosapentaenoic acid (22:5 n-6), both metabolites of arachidonic acid, accumulated in phospholipid and cholesterol ester species of peritoneal cells, but not in liver cells, of essential fatty acid sufficient mice. The overall body of data presented illustrates the implementation of electrospray/tandem mass spectrometry as a method for facile and direct quantification of changes in lipid species during lipid metabolic studies.  相似文献   

3.
Cultured hepatocytes isolated from livers of 17 alpha-ethynylestradiol-treated rats were used to investigate the change of lipid metabolism induced by administration of 17 alpha-ethynylestradiol. Treatment with 17 alpha-ethynylestradiol caused a decrease of rat plasma lipids (free cholesterol, cholesterol ester, triacylglycerol and phosphatidylcholine). No difference in the ability of urea nitrogen synthesis could be demonstrated between cultured hepatocytes isolated from livers of 17 alpha-ethynylestradiol-treated rats and propylene glycol-treated rats (control). Total cholesterol and cholesterol ester contents of cultured hepatocytes isolated from livers of 17 alpha-ethynylestradiol-treated rats were increased in comparison with those of the control. Triacylglycerol content of cultured hepatocytes was not affected by 17 alpha-ethynylestradiol treatment. There was no difference in the composition of lipid content between liver tissues and cultured hepatocytes. These results suggest that hepatocytes isolated from livers maintain the character of livers treated with 17 alpha-ethynylestradiol or livers treated with propylene glycol. Free cholesterol and cholesterol ester synthesis from [14C]acetic acid by cultured hepatocytes isolated from livers of 17 alpha-ethynylestradiol-treated rats were decreased to about 30% of the control. Triacylglycerol and polar lipid (phospholipid) synthesis from [14C]acetic acid were not affected by 17 alpha-ethynylestradiol treatment. Microsomal hydroxymethylglutaryl-CoA reductase activity of rat liver treated with 17 alpha-ethynylestradiol was decreased to about 50% of control. The secretions of free cholesterol, cholesterol ester, triacylglycerol, phosphatidylcholine, apolipoprotein BL and BS by cultured hepatocytes isolated from livers of 17 alpha-ethynylestradiol treated rats were not decreased when compared with the control. Because lipid and apolipoprotein secretions from cultured hepatocytes treated with 17 alpha-ethynylestradiol were not decreased and cholesterol contents of liver tissues and cultured hepatocytes treated with 17 alpha-ethynylestradiol were increased and hepatic microsomal hydroxymethylglutaryl-CoA reductase activity was decreased by 17 alpha-ethynylestradiol treatment, it is suggested that the liver plays an important role in hypolipidemia induced by 17 alpha-ethynylestradiol by increasing the plasma lipid uptake mediated by an increased amount of lipoprotein receptors of liver membranes.  相似文献   

4.
1. Fatty acid patterns of liver and plasma triglycerides, phospholipids and cholesteryl esters were determined at intervals during 24hr. after essential fatty acid-deficient rats were given one feeding of linoleate (as safflower oil). 2. Liver triglyceride, phospholipid and cholesteryl ester fatty acid compositions did not change up to 7hr. after feeding. Between 7 and 10hr., linoleic acid began to increase in all fractions, but arachidonic acid did not begin to rise in the phospholipid until 14-19hr. after feeding. 3. Oleic acid and eicosatrienoic acid in liver phospholipid began to decline at about the time that linoleic acid increased, i.e. about 9hr. before arachidonic acid began to increase. 4. Changes in linoleic acid, arachidonic acid and eicosatrienoic acid in phosphatidylcholine resembled those of the total phospholipid. Phosphatidylethanolamine had a higher percentage content of arachidonic acid before the linoleate was given than did phosphatidylcholine, and after the linoleate was given the fatty acid composition of this fraction was little changed. 5. The behaviour of the plasma lipid fatty acids was similar to that of the liver lipids, with changes in linoleic acid, eicosatrienoic acid and arachidonic acid appearing at the same times as they occurred in the liver. 6. The results indicated that linoleic acid was preferentially incorporated into the liver phospholipid at the expense of eicosatrienoic acid and oleic acid. The decline in these fatty acids apparently resulted from their competition with linoleic acid for available sites in the phospholipids rather than from any direct replacement by arachidonic acid.  相似文献   

5.
Dietary orotic acid is known to cause impaired fatty acid synthesis and increased cholesterol synthesis in rats. We found that the impaired fatty acid synthesis occurs during the first day of orotic acid feeding and, in studies with albumin-bound [1-14C]palmitic acid, an associated decrease in the rate of esterification of this fatty acid into triacylglycerol, phospholipid, and cholesteryl ester was observed. These changes may result from the known decreases in liver levels of adenine nucleotides or, as reported here, from decreased liver CoASH levels in orotic acid-fed rats. The increase in hepatic cholesterol synthesis occurred during the second day of orotic acid feeding. It was detected by increased incorporation of [1,2-14C]acetate into cholesterol by liver slices and by a 7-fold increase in HMG-CoA reductase activity. At the same time the biliary output of cholesterol was increased 2-fold and studies using 3H2O revealed that the output of newly synthesized cholesterol in bile was increased 5-fold. The content of cholesteryl ester in hepatic microsomes decreased during orotic acid feeding but free cholesterol was unchanged. The findings are interpreted to suggest that the increased bile cholesterol secretion caused by orotic acid is a result of impaired hepatic cholesterol esterification and that the increase in HMG-CoA reductase activity is a result of diminished negative feedback due to the depleted content of cholesteryl ester in the hepatic microsomes.  相似文献   

6.
1. The lipids of rat heart, kidney, skeletal muscle and liver were separated by chromatography on silicic acid into cholesterol ester, triglyceride, free-fatty acid and phospholipid fractions. 2. The fatty acid compositions of these fractions were determined by gas–liquid chromatography. 3. Palmitic acid was always present in highest concentration in the cholesterol ester fraction; oleic acid was present in greatest percentage in the triglyceride fraction; arachidonic acid was in highest concentration in phospholipid, and in lowest concentration in triglyceride fractions. 4. The fatty acid compositions of the cholesterol ester fractions were broadly similar for all the extrahepatic tissues. 5. Some differences in fatty acid composition of the phospholipids were evident between the hepatic and extrahepatic fractions.  相似文献   

7.
Normal female rats were given 15mug of ethynyloestradiol/kg body wt. for 14 days and were killed on day 15 after starvation for 12-14h. The livers were isolated and were perfused with a medium containing washed bovine erythrocytes, bovine serum albumin, glucose and [1-(14)C]oleic acid; 414mumol of oleate were infused/h during a 3h experimental period. The output of bile and the flow of perfusate/g of liver were decreased in livers from animals pretreated with ethynyloestradiol, whereas the liver weight was increased slightly. The rates of uptake and of utilization of [1-(14)C]oleate were measured when the concentration of unesterified fatty acid in the perfusate plasma was constant. The uptake of unesterified fatty acid was unaffected by pretreatment of the animal with oestrogen; however, the rate of incorporation of [1-(14)C]oleate into hepatic and perfusate triacylglycerol was stimulated, whereas the rate of conversion into ketone bodies was impaired by treatment of the rat with ethynyloestradiol. Pretreatment of the rat with ethynyloestradiol increased the output of very-low-density lipoprotein triacylglycerol, cholesterol, phospholipid and protein. The production of (14)CO(2) and the incorporation of radioactivity into phospholipid, cholesteryl ester and diacylglycerol was unaffected by treatment with the steroid. The net output of glucose by livers from oestrogen-treated rats was impaired despite the apparent increased quantities of glycogen in the liver. The overall effect of pretreatment with oestrogen on hepatic metabolism of fatty acids is the channeling of [1-(14)C]oleate into synthesis and increased output of triacylglycerol as a moiety of the very-low-density lipoprotein, whereas ketogenesis is decreased. The effect of ethynyloestradiol on the liver is apparently independent of the nutritional state of the animal from which the liver was obtained. It is pertinent that hepatocytes prepared from livers of fed rats that had been treated with ethynyloestradiol produced fewer ketone bodies and secreted more triacylglycerol than did hepatocytes prepared from control animals. In these respects, the effects of the steroid were similar in livers from fed or starved (12-14h) rats. Oestrogens may possibly inhibit hepatic oxidation of fatty acid, making more fatty acid available for the synthesis of triacylglycerol, or may stimulate the biosynthesis of triacylglycerol, or may be active on both metabolic pathways.  相似文献   

8.
Macrophages are able to produce, export, and transfer fatty acids to lymphocytes in culture. The purpose of this study was to examine if labelled fatty acids could be transferred from macrophages to pancreatic islets in co-culture. We found that after 3 h of co-culture the transfer of fatty acids to pancreatic islets was: arachidonic > oleic > linoleic = palmitic. Substantial amounts of the transferred fatty acids were found in the phospholipid fraction; 87.6% for arachidonic, 59.9% for oleic, 53.1% for palmitic, and 36.9% for linoleic acids. The remaining radioactivity was distributed among the other lipid fractions analysed (namely polar lipids, cholesterol, fatty acids, triacylglycerol and cholesterol ester), varying with the fatty acid used. For linoleic acid, a significant proportion (63.1%) was almost equally distributed in these lipid fractions. Also, it was observed that transfer of fatty acids from macrophages to pancreatic islets is time-dependent up to 24 h, being constant and linear with time for palmitic acid and remaining constant after 12 h for oleic acid. These results lead us to postulate that in addition to the serum, circulating monocytes may also be a source of fatty acids to pancreatic islets, mainly arachidonic acid.  相似文献   

9.
After a psychosomatic stress applied to pregnant guinea-pigs, 7 or 1 day before term, plasma cortisol and non-esterified fatty acid levels increased immediately in mother and fetus. Plasma levels of cortisol and non-esterified fatty acids in newborns of mothers stressed 1 day before term were lower than in newborns of control mothers. The prenatal stress changed composition of triacylglycerol and phospholipids in newborn liver by inhibiting the postnatal increase of triacylglycerol and phospholipid stearic acid and by inhibiting the postnatal decrease in phospholipid palmitic, palmitoleic, linolenic and arachidonic acids.  相似文献   

10.
1. The triglyceride, cholesterol ester and total phospholipid fractions were isolated from the livers and yolk sacs of normal and vitamin B12-deficient chick embryos after 13, 15, 17, 19 and 21 days of incubation, and the fatty acid compositions were determined. 2. At all stages of incubation, the concentration of cholesterol ester in the livers of the normal embryos were greater, and on days 15 and 17 the concentrations of triglyceride were considerably less, than the corresponding concentrations in the livers of the deficient embryos. 3. Between day 13 and day 21 of incubation the concentration of oleic acid in the liver triglycerides of the normal embryos increased, whereas the concentrations of palmitic acid and docosahexaenoic acid decreased. Vitamin B12 deficiency resulted in higher concentrations of palmitic acid in the liver triglycerides on days 15, 17 and 19, higher concentrations of C18 polyunsaturated acids on days 13 and 15 and lower concentrations of oleic acid on days 13, 15, 17 and 19. 4. At all stages of development, cholesterol oleate accounted for almost 80% of the total liver cholesterol esters in both normal and deficient embryos. 5. As development of the normal embryos progressed, the concentrations of palmitic acid and arachidonic acid in the liver phospholipid decreased, whereas the concentrations of stearic acid and docosahexaenoic acid increased. Vitamin B12 deficiency resulted in markedly higher concentrations of stearic acid and palmitic acid and markedly lower concentrations of arachidonic acid and docosahexaenoic acid in the liver phospholipids. 6. Vitamin B12 deficiency did not influence the fatty acid composition of the triglyceride, cholesterol ester and phospholipid fractions either in the yolks of fertile unincubated eggs or in the yolks obtained from eggs that had been incubated for 13, 15, 17, 19 and 21 days.  相似文献   

11.
A protocol for the analysis of the lipid profile of microsamples of aortic tissue was developed. Lipid extraction was from intact tissue using acetone and chloroform/methanol (2/1, v/v). The extract was analyzed for total lipid, esterified cholesterol, cholesterol, triacylglycerol, and phospholipid. The extract was then processed to separate cholesteryl esters, triacylglycerol, and phospholipid which were hydrolyzed and the fatty acid composition was determined by GLC of pentafluorobenzyl ester derivatives. A lipid profile could be obtained on samples with a wet weight of 5 mg.  相似文献   

12.
The effect of dietary fats with varying degrees of unsaturation in the presence of different concentrations of vitamin E on tissue lipid levels was studied in rats. Rats were fed either menhaden oil, olive oil or coconut oil at 15% levels with either 0.1, 0.3 or 0.6 mg/g of vitamin E as alpha-tocopherol for four weeks. Rat serum and liver were analyzed for total cholesterol, HDL-cholesterol, triacylglycerol and phospholipids. In addition, fatty acid composition of serum lipids was also analyzed. Serum total cholesterol and triacylglycerol were significantly lower in rats fed menhaden oil than in those fed olive or coconut oil, while the HDL-cholesterol was significantly higher in serum of rats fed menhaden and olive oil than in those fed coconut oil. Levels of vitamin E in the diet had only a significant effect on serum cholesterol and liver phospholipids. The Pearson correlation coefficient showed a significant positive relationship between serum triacylglycerol and total cholesterol, and a negative correlation between triacylglycerol and HDL-cholesterol, and between total and HDL-cholesterol.In the liver, total cholesterol was significantly higher in rats fed coconut oil than in rats fed menhaden oil. Total liver phospholipids were lower in rats fed either coconut oil or olive oil compared to those fed menhaden oil, especially with higher levels of vitamin E intake. Higher levels of vitamin E in the diet appear to increase triacylglycerol and phospholipids in livers of rats fed menhaden oil. In the liver a significant negative correlation was observed between phospholipids and cholesterol. The type and degree of unsaturation (polyunsaturated fatty acids in menhaden oil, monounsaturated fatty acids in olive oil and saturated fatty acids in coconut oil) significantly affected plasma and tissue lipids.  相似文献   

13.
The influence of 4 weeks treatment with fish oil and coconut oil enriched diets on the chemical composition of rat liver plasma membranes and LDL and on the binding of LDL to liver membranes was investigated. Rats fed fish oil diet showed a total, LDL and HDL plasma cholesterol concentration lower than the values observed in rats fed coconut oil and to a lesser extent lower than those of rats fed standard laboratory diet. LDL of rats on fish oil diet had a relative percentage of cholesterol and phospholipid lower, while that of triacylglycerol was greater. Furthermore, fish oil feeding was associated with a greater concentration of n - 3 fatty acids and a lower arachidonic and linoleic acid content in LDL. Liver plasma membranes isolated from fish oil rats showed a higher percentage of n - 3 fatty acids, while only a trace amount of these fatty acids was found in control and coconut oil fed animals. In binding experiments performed with LDL and liver membranes from fish oil fed rats and control rats, binding affinity (Kd = 3.47 +/- 0.93 and 4.56 +/- 1.27, respectively) was significantly higher (P less than 0.05) as compared to that found using membranes and lipoprotein from coconut oil fed rats (Kd = 6.82 +/- 2.69). In cross-binding experiments performed with fish oil LDL and coconut oil liver plasma membranes or coconut oil LDL and fish oil liver plasma membranes, the LDL binding affinity was comparable and similar to that found in fish oil fed animals. No difference was found in the Bmax among all the groups of binding experiments. Our data seem to indicate that during fish oil diet the higher binding affinity of LDL to liver plasma membranes might be partly responsible of the hypocholesterolemic action of marine oil rich diet as compared to saturated diet. Furthermore, the modifications of binding affinity induced by changes of LDL and membrane source, suggest that lipoprotein and liver plasma membrane composition may be an important variable in binding studies.  相似文献   

14.
The fatty acid composition of individual glycerolipids in brain and sciatic nerve of rats made diabetic with streptozotocin and sacrificed 8 weeks later was determined and compared to the alterations that occurred in liver and kidney glycerlipids. A substantial decrease in the proportion of arachidonic acid and increases in the relative content of linoleic and docosahexenoic (22∶6n3) acids occurred in the phosphoglycerides of visceral tissues from diabetic animals as reported by others. In contrast, except for a small rise in the percentage of linoleic acid, no consistent changes in fatty acid composition of phosphatidylcholine, phosphatidylethanolamine, ethanolamine plasmalogen, phosphatidylinositol or phosphatidylerrine from brain or nerve were detected. The fatty acids of triacylglycerol associated with nerve exhibited alterations similar to those characteristic of liver. The differences which developed as a result of diabetes were completely prevented if animals were maintained continuously on insulin commencing shortly after administration of streptozotocin. It is concluded that the fatty acid composition of brain and nerve phosphoglycerides are unusually resistant to alteration in the diabetic animal and that consequently, changes in bulk membrane fluidity are unlikely to contribute to functional abnormalities displayed by diabetic peripheral nerve. Special Issue dedicated to Dr. Eugene Kreps.  相似文献   

15.
1. The acyl-CoA:cholesterol acyltransferase (ACAT) activity and lipid composition of intestinal microsomal membrane were investigated 6 weeks after both 50 and 75% distal small bowel resection (DSBR). 2. No changes in both microsomal ACAT activity and cholesteryl ester levels were found, while microsomal non-esterified cholesterol content was increased after the surgical operation. 3. The total phospholipid content of the microsomes did not change as a result of DSBR. 4. The microsomal phospholipid fatty acid composition showed a significant increase in saturated fatty acids together with no changes in both total monounsaturated and total polyunsaturated fatty acids after resection. 5. An increase in the levels of linoleic acid accompanied by a decrease in arachidonic acid was found in remnant intestine of resected rats.  相似文献   

16.
Exogenously hypercholesterolemic (ExHC) rats were fed on an atherogenic diet supplemented with 1% each of either ethyl ester docosahexaenoic acid [EE-DHA, 22:6(n-3)], ethyl ester eicosapentaenoic acid [EE-EPA, 20:5(n-3)] or safflower oil (SO) for 6 months. The rats fed on the diets containing EE-EPA or EE-DHA, compared with those fed on SO, had lower serum cholesterol and triacylglycerol levels, less aggregation of platelets and slower progress of intimal thickening in the ascending aorta. Relative to the SO-fed rats, both of the (n-3) fatty acid-fed rats had a significantly reduced proportion of arachidonic acid in the platelet and aortic phospholipids, and lower production of thromboxane A2 by platelets and of prostacyclin by the aorta. These results suggest that EPA and DHA are similarly involved in preventing atherosclerosis development by reducing hypercholesterolemia and modifying the platelet functions.  相似文献   

17.
The mechanism for the reduced hepatic production of triacylglycerol in the presence of eicosapentaenoic acid was explored in short-term experiments using cultured parenchymal cells and microsomes from rat liver. Oleic, palmitic, stearic, and linoleic acids were the most potent stimulators of triacyl[3H]glycerol synthesis and secretion by hepatocytes, whereas erucic, alpha-linolenic, gamma-linolenic, arachidonic, docosahexaenoic, and eicosapentaenoic acids (in decreasing order) were less stimulatory. There was a linear correlation (r = 0.85, P less than 0.01) between synthesis and secretion of triacyl[3H]glycerol for the fatty acids examined. The extreme and opposite effects of eicosapentaenoic and oleic acids on triacylglycerol metabolism were studied in more detail. With increasing number of free fatty acid molecules bound per molecule of albumin, the rate of synthesis and secretion of triacyl[3H]glycerol increased, most markedly for oleic acid. Cellular uptake of the two fatty acids was similar, but more free eicosapentaenoic acid accumulated intracellularly. Eicosapentaenoic acid caused higher incorporation of [3H]water into phospholipid and lower incorporation into triacylglycerol and cholesteryl ester as compared to oleic acid. No difference was observed between the fatty acids on incorporation into cellular free fatty acids, monoacylglycerol and diacylglycerol. The amount of some 16- and 18-carbon fatty acids in triacylglycerol was significantly higher in the presence of oleic acid compared with eicosapentaenoic acid. Rat liver microsomes in the presence of added 1,2-dioleoyl-glycerol incorporated eicosapentaenoic acid and eicosapentaenoyl-CoA into triacylglycerol to a lesser extent than oleic acid and its CoA derivative. Decreased formation of triacylglycerol was also observed when eicosapentaenoyl-CoA was given together with oleoyl-CoA, whereas palmitoyl-CoA, stearoyl-CoA, linoleoyl-CoA, linolenoyl-CoA, and arachi-donoyl-CoA had no inhibitory effect. In conclusion, inhibition of acyl-CoA:1,2-diacylglycerol O-acyltransferase (EC 2.3.1.20) by eicosapentaenoic acid may be important for reduced synthesis and secretion of triacylglycerol from the liver.  相似文献   

18.
A high cholesterol diet induced a fatty liver and an increase in cholesterol oleate in spontaneously hypertensive rats. The activity of microsomal glycerophosphate acyltransferase in liver increased 2-3-fold to meet the increased supply of oleate, the synthesis of which was stimulated by a 10-fold increase in microsomal delta 9-desaturase activity. Hepatic fatty acid synthetase and diacylglycerol acyltransferase activities were decreased somewhat. These results, together with the fact that the large increases in hepatic cholesterol ester and triacylglycerol were not correspondingly reflected in plasma, indicated that the fatty liver resulted from decreased secretion of lipoprotein rather than increased lipogenesis. Endogenous cholesterol in liver microsomes increased 2-fold and hepatic acyl-CoA:cholesterol acyltransferase activity increased 3-fold, whereas plasma lecithin:cholesterol acyltransferase activity was unchanged. Thus, the increase in cholesterol oleate seen in spontaneously hypertensive rats fed a high cholesterol diet is due mainly to increases in acyl-CoA:cholesterol acyltransferase and delta 9-desaturase activities.  相似文献   

19.
Perinatal development of hepatic cholesterol synthesis in the rat   总被引:2,自引:0,他引:2  
Rates of cholesterol synthesis and HMG CoA reductase activity in rat liver, have been reported to be high before and low after birth. The timing of the decline in perinatal rates of cholesterol synthesis, however, is uncertain. These studies, therefore, determined in vivo rates of cholesterol synthesis using [3H]water and hepatic reductase activity in vitro in perinatal rats. The lipid composition of the plasma, liver and its microsomal subfraction were also determined. Reductase activity increased during late gestation, remained high immediately after birth, then decreased with the commencement of suckling. Rates of cholesterol synthesis increased from gestation day 18 to 20, but in contrast to reductase activity, decreased on the day before birth. Plasma cholesterol and triacylglycerol levels increased to gestation day 19, then decreased to term. By the 6th h after birth, plasma and liver cholesterol and triacylglycerol levels had increased markedly. By 48 h after birth, the high hepatic cholesterol content was associated with an increase in the cholesteryl ester fraction. The microsomal cholesterol/phospholipid molar ratio decreased from gestation day 16 until 12 h after birth, then increased markedly from 36 to 48 h. There was an apparent inverse relationship between the change in microsomal cholesterol/phospholipid molar ratio and the fatty acid unsaturation index from gestation day 16 to 36 h after birth. The results suggest that in late gestation and before suckling, the low in vivo rate of hepatic cholesterol synthesis may not be due to low activity of HMG CoA reductase.  相似文献   

20.
This study was designed to examine the effect of thermal acclimation on the lipid composition of fat depot organs the liver and kidneys of larval sea lamprey, Petromyzon marinus. We found that 21 °C-acclimated larvae possessed lower total lipid amounts in the liver (39% lower) and kidneys (30% lower) than 13 °C-acclimated larvae. Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not the structural lipid, phospholipid. Compared to 21 °C-acclimated larvae, 13 °C-acclimated larvae were found to possess fewer saturated fatty acids (SFAs) and more unsaturated fatty acids (USFAs) in renal triacylglycerol and phospholipid classes, while there were no significant differences in the SFAs and USFAs of hepatic triacylglycerol, phospholipid, cholesteryl ester, fatty acid, and monoacylglycerol classes. Fewer SFAs, found in the kidney triacylglycerol of 13 °C-acclimated lamprey, were due to lower 12:0 and 14:0 fatty acids, but those in the renal phospholipid class were characterized by fewer 14:0, 15:0, and 16:0 fatty acids. More USFAs in renal triacylglycerol, as indicated by a higher unsaturation index, primarily resulted from higher polyunsaturated fatty acids (18:2ω6, 18:3ω3, and 18:4ω3); whereas, in the renal phospholipid class, this was a result of higher monoenes (18:1, 20:1, and 22:1ω9) and ω3 polyunsaturated fatty acids (18:4ω3). These data suggest that the influence of thermal acclimation on the lipid composition of lamprey fat depot organs depends on tissue and lipid class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号