首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of valine catabolism in Pseudomonas putida   总被引:12,自引:10,他引:2       下载免费PDF全文
The activities of six enzymes which take part in the oxidation of valine by Pseudomonas putida were measured under various conditions of growth. The formation of four of the six enzymes was induced by growth on d- or l-valine: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, and methylmalonate semialdehyde dehydrogenase. Branched-chain amino acid transaminase and isobutyryl-CoA dehydrogenase were synthesized constitutively. d-Amino acid dehydrogenase and branched-chain keto acid dehydrogenase were induced during growth on valine, leucine, and isoleucine, and these enzymes were assumed to be common to the metabolism of all three branched-chain amino acids. The segment of the pathway required for oxidation of isobutyrate was induced by growth on isobutyrate or 3-hydroxyisobutyrate without formation of the preceding enzymes. d-Amino acid dehydrogenase was induced by growth on l-alanine without formation of other enzymes required for the catabolism of valine. d-Valine was a more effective inducer of d-amino acid dehydrogenase than was l-valine. Therefore, the valine catabolic pathway was induced in three separate segments: (i) d-amino acid dehydrogenase, (ii) branched-chain keto acid dehydrogenase, and (iii) 3-hydroxyisobutyrate dehydrogenase plus methylmalonate semialdehyde dehydrogenase. In a study of the kinetics of formation of the inducible enzymes, it was found that 3-hydroxyisobutyrate and methylmalonate semialdehyde dehydrogenases were coordinately induced. Induction of enzymes of the valine catabolic pathway was studied in a mutant that had lost the ability to grow on all three branched-chain amino acids. Strain PpM2106 had lowered levels of branched-chain amino acid transaminase and completely lacked branched-chain keto acid dehydrogenase when grown in medium which contained valine. Addition of 2-ketoisovalerate, 2-ketoisocaproate, or 2-keto-3-methylvalerate to the growth medium of strain PpM2106 resulted in induction of normal levels of branched-chain keto acid dehydrogenase; therefore, the branched-chain keto acids were the actual inducers of branched-chain keto acid dehydrogenase.  相似文献   

2.
The regulation of synthesis of the valine-alanine-alpha-aminobutyrate transaminase (transaminase C) was studied in Escherichia coli mutants lacking the branched-chain amino acid transaminase (transaminase B). An investigation was made of two strains, CU2 and CU2002, each carrying the same transaminase B lesion but exhibiting different growth responses on a medium supplemented with branched-chain amino acids. Both had the absolute isoleucine requirement characteristic of ilvE auxotrophs, but growth of strain CU2 was stimulated by valine, whereas that of strain CU2002 was markedly inhibited by valine. Strain CU2002 behaved like a conditional leucine auxotroph in that the inhibition by valine was reversed by leucine. Results of enzymatic studies showed that synthesis of transaminase C was repressed by valine in strain CU2002 but not in strain CU2. Inhibition by valine in strain CU2002 appears to be the combined effect of repression on transaminase C synthesis and valine-dependent feedback inhibition of alpha-acetohydroxy acid synthase activity, causing alpha-ketoisovalerate (and hence leucine) limitation. The ilvE markers of strains CU2 and CU2002 were each transferred by transduction to a wild-type genetical background. All ilvE recombinants from both crosses resembled strain CU2002 and were inhibited by valine in the presence of isoleucine. Thus, strain CU2 carries an additional lesion that allows it to grow on a medium containing isoleucine plus valine. It is concluded that conditional leucine auxotrophy is characteristic of mutants carrying an ilvE lesion alone.  相似文献   

3.
Isolation of mutants lacking branched-chain amino acid transaminase.   总被引:1,自引:0,他引:1  
Variants of the Chinese hamster ovary cell have been isolated which can no longer grow when valine, leucine, or isoleucine is replaced in the culture medium by its respective alpha-keto acid: alpha-ketoisovaleric acid, alpha-ketoisocaproic acid, or alpha-keto-beta-methylvaleric acid. These variants lack branched-chain amino acid transaminase activity. Evidence is presented indicating these variants to be single gene mutants. Genetic evidence is also presented confirming previous biochemical evidence that a single enzyme carries out transaminase functions on valine, leucine, and isoleucine. The branched-chain transaminase-deficient (trans-) mutants can be reverted to wild-type behavior by treatment with mutagenic agents. These mutants promise to be useful in exploring regulatory mechanisms in biochemical, genetic, and cancer research.  相似文献   

4.
The regulation of the formation of isoleucine-valine biosynthetic enzymes was examined to elucidate the mechanism of isoleucine-valine accumulation by alpha-aminobutyric acid-resistant (abu-r) mutants of Serratia marcescens. In the isoleucine-valine auxotroph, l-threonine dehydratase, acetohydroxy acid synthetase, and transaminase B were repressed when isoleucine, valine, and leucine were simultaneously added to minimal medium. These enzymes were derepressed at the limitation of any single branched-chain amino acid. Pantothenate, which stimulated growth of this auxotroph, had no effect on the enzyme levels. It became evident from these results that in S. marcescens isoleucine-valine biosynthetic enzymes are subject to multivalent repression by three branched-chain amino acids. The abu-r mutants had high enzyme levels in minimal medium, with or without three branched-chain amino acids. Therefore, in abu-r mutants, isoleucine-valine biosynthetic enzymes are genetically derepressed. This derepression was considered to be the primary cause for valine accumulation and increased isoleucine accumulation.  相似文献   

5.
AIMS: Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from the corresponding amino acids and this paper intends to perspectivate these flavour compounds in the context of leucine metabolism. METHODS AND RESULTS: GC and GC/MS analysis combined with stable isotope labelling was used to study leucine catabolism. This amino acid together with valine and isoleucine was used as precursors for the production of branched-chain fatty acids for cell membrane biosynthesis during growth. A 83.3% of the cellular fatty acids were branched. The dominating fatty acid was anteiso-C(15:0) that constituted 55% of the fatty acids. A pyridoxal 5'-phosphate and alpha-ketoacid dependent reaction catalysed the deamination of leucine, valine and isoleucine into their corresponding alpha-ketoacids. As alpha-amino group acceptor alpha-keto-beta-methylvaleric acid and alpha-ketoisovaleric acid was much more efficient than alpha-ketoglutarate. The sensorially and metabolic key intermediate on the pathway to the branched-chain fatty acids, 3-methylbutanoic acid was produced from leucine at the onset of the stationary growth phase and then, when the growth medium became scarce in leucine, from the oxidation of glucose via pyruvate. CONCLUSIONS: This paper demonstrates that the sensorially important branched-chain aldehydes and acids are important intermediates on the metabolic route leading to branched-chain fatty acids for cell membrane biosynthesis. SIGNIFICANCE AND IMPACT OF THE STUDY: The metabolic information obtained is extremely important in connection with a future biotechnological design of starter cultures for production of fermented meat.  相似文献   

6.
7.
Regulation of leucine catabolism in Pseudomonas putida   总被引:2,自引:0,他引:2       下载免费PDF全文
The generation time of Pseudomonas putida with l-leucine was 20 h in synthetic media but only 3 h with d-leucine. Slow growth in the presence of l-leucine was partially overcome by addition of 0.1 mM amounts of either d-valine, l-valine, or 2-ketoisovalerate. The activities of five enzymes which take part in the oxidation of leucine by P. putida were measured under various conditions of growth. Four enzymes were induced by growth with dl-leucine as sole source of carbon: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-methylcrotonyl-coenzyme A carboxylase, and 3-hydroxy-3-methylglutaryl-coenzyme A lyase. The segment of the pathway required for oxidation of 3-methylcrotonate was induced by growth on isovalerate or 3-methylcrotonate without formation of the preceding enzymes. The synthesis of carboxylase and lyase appeared to have been repressed by the addition of l-glutamate or glucose to cells growing on dl-leucine as the sole carbon source. Mutants unable to grow at the expense of isovalerate had reduced levels of carboxylase and lyase, whereas the levels of three enzymes common to the catabolism of all three branched-chain amino acids and those of two isoleucine catabolic enzymes were normal.  相似文献   

8.
Addition of NADH to crude but not to pure branched-chain α-keto acid decarboxylase decreased the CO2 production from α-keto-β-methylvalerate (KMV) suggesting the presence of an NADH dependent inhibitor in the crude enzyme from Bacillus subtilis. This NADH-dependent decarboxylase inhibitor was purified to homogeneity by a fast protein liquid chromatography system.

The purified inhibitor was identical with leucine dehydrogenase as to N-terminal amino acid squence (35 residues) and molecular weight, and catalyzed the oxidative deamination of three branched chain amino acids (BCAAs), valine, leucine, and isoleucine. The decarboxylase inhibitor was therefore identified as leucine dehydrogenase. A decreased substrate availability caused by leucine dehydrogenase thus reasonably accounted for the NADH dependent inhibition of the decarboxylation. In turn, the observation that leucine dehydrogenase competes with the decarboxylase for branched-chain α-keto acid (BCKA) suggested an involvement of this enzyme in the branched chain fatty acid (BCFA) biosynthesis. This view was supported by the observation that addition of NAD to crude fatty acid synthetase increased the incorporation of isoleucine into BCFAs. Pyridoxal-5′-phosphate and α-ketoglutarate, cofactors for BCAA transaminase, modulated BCFA biosynthesis from isoleucine in vitro, suggesting also the involvement of transaminase reaction in BCFA biosynthesis.  相似文献   

9.
Lipoic acid-dependent pathways of alpha-keto acid oxidation by mitochondria were investigated in pea (Pisum sativum), rice (Oryza sativa), and Arabidopsis. Proteins containing covalently bound lipoic acid were identified on isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis separations of mitochondrial proteins by the use of antibodies raised to this cofactor. All these proteins were identified by tandem mass spectrometry. Lipoic acid-containing acyltransferases from pyruvate dehydrogenase complex and alpha-ketoglutarate dehydrogenase complex were identified from all three species. In addition, acyltransferases from the branched-chain dehydrogenase complex were identified in both Arabidopsis and rice mitochondria. The substrate-dependent reduction of NAD(+) was analyzed by spectrophotometry using specific alpha-keto acids. Pyruvate- and alpha-ketoglutarate-dependent reactions were measured in all three species. Activity of the branched-chain dehydrogenase complex was only measurable in Arabidopsis mitochondria using substrates that represented the alpha-keto acids derived by deamination of branched-chain amino acids (Val [valine], leucine, and isoleucine). The rate of branched-chain amino acid- and alpha-keto acid-dependent oxygen consumption by intact Arabidopsis mitochondria was highest with Val and the Val-derived alpha-keto acid, alpha-ketoisovaleric acid. Sequencing of peptides derived from trypsination of Arabidopsis mitochondrial proteins revealed the presence of many of the enzymes required for the oxidation of all three branched-chain amino acids. The potential role of branched-chain amino acid catabolism as an oxidative phosphorylation energy source or as a detoxification pathway during plant stress is discussed.  相似文献   

10.
Branched-chain keto acid dehydrogenase, an enzyme in the common pathway of branched-chain amino acid catabolism of Pseudomonas putida, is a multienzyme complex which catalyzes the oxidative decarboxylation of branched-chain keto acids. The objective of the present study was to isolate strains with mutations of this and other keto acid dehydrogenases and to map the location of the mutations on the chromosome of P. putida. Several strains with mutations of branched-chain keto acid dehydrogenase, two pyruvate and two 2-ketoglutarate dehydrogenase, were isolated, and the defective subunits were identified by biochemical analysis. By using a recombinant XYL-K plasmid to mediate conjugation, these mutations were mapped in relation to a series of auxotrophic and other catabolic mutations. The last time of entry recorded was at approximately 35 min, and the data were consistent with a single point of entry. Branched-chain keto acid dehydrogenase mutations affecting E1, E1 plus E2, and E3 subunits mapped at approximately 35 min. One other strain affected in the common pathway was deficient in branched-chain amino acid transaminase, and the mutation was mapped at 16 min. The mutations in the two pyruvate dehydrogenase mutants, one deficient in E1 and the other deficient in E1 plus E2, mapped at 22 minutes. The 2-ketoglutarate dehydrogenase mutation affecting the E1 subunit mapped at 12 minutes. A 2-ketoglutarate dehydrogenase mutant deficient in E3 was isolated, but the mutation proved too leaky to map.  相似文献   

11.
Branched-chain amino acid metabolism in hemidiaphragms from 40 h-starved rats is influenced by the provision of glucose as co-substrate. Glucose inhibits 14CO2 production from [l-14C]valine and [U-14C]valine but stimulates 14CO2 production from [l-14C]leucine, [U-14C]leucine and [U-14C]isoleucine. In the presence of glucose, ketone bodies inhibit alanine release and 14CO2 production from [l-14C]valine, [l-14C]leucine and [U-14C]isoleucine, but inhibition is not observed in the absence of glucose as cosubstrate. Glucose-dependent inhibition by ketone bodies of branched-chain amino acid oxidation via inhibition of the branched-chain 2-oxo acid dehydrogenase complex or branched-chain amino acid aminotransferase may account in part for the reported hypoalanaemic action of ketone bodies in vivo.  相似文献   

12.
A second cluster of genes encoding the E1 alpha, E1 beta, and E2 subunits of branched-chain alpha-keto acid dehydrogenase (BCDH), bkdFGH, has been cloned and characterized from Streptomyces avermitilis, the soil microorganism which produces anthelmintic avermectins. Open reading frame 1 (ORF1) (bkdF, encoding E1 alpha), would encode a polypeptide of 44,394 Da (406 amino acids). The putative start codon of the incompletely sequenced ORF2 (bkdG, encoding E1 beta) is located 83 bp downstream from the end of ORF1. The deduced amino acid sequence of bkdF resembled the corresponding E1 alpha subunit of several prokaryotic and eukaryotic BCDH complexes. An S. avermitilis bkd mutant constructed by deletion of a genomic region comprising the 5' end of bkdF is also described. The mutant exhibited a typical Bkd- phenotype: it lacked E1 BCDH activity and had lost the ability to grow on solid minimal medium containing isoleucine, leucine, and valine as sole carbon sources. Since BCDH provides an alpha-branched-chain fatty acid starter unit, either S(+)-alpha-methylbutyryl coenzyme A or isobutyryl coenzyme A, which is essential to initiate the synthesis of the avermectin polyketide backbone in S. avermitilis, the disrupted mutant cannot make the natural avermectins in a medium lacking both S(+)-alpha-methylbutyrate and isobutyrate. Supplementation with either one of these compounds restores production of the corresponding natural avermectins, while supplementation of the medium with alternative fatty acids results in the formation of novel avermectins. These results verify that the BCDH-catalyzed reaction of branched-chain amino acid catabolism constitutes a crucial step to provide fatty acid precursors for antibiotic biosynthesis in S. avermitilis.  相似文献   

13.
Expression of 3-hydroxyisobutyrate dehydrogenase in cultured neural cells   总被引:4,自引:0,他引:4  
The branched-chain amino acids (BCAAs) – isoleucine, leucine, and valine – belong to the limited group of substances transported through the blood–brain barrier. One of the functions they are thought to have in brain is to serve as substrates for meeting parenchymal energy demands. Previous studies have shown the ubiquitous expression of a branched-chain alpha-keto acid dehydrogenase among neural cells. This enzyme catalyzes the initial and rate-limiting step in the irreversible degradative pathway for the carbon skeleton of valine and the other two branched-chain amino acids. Unlike the acyl-CoA derivates in the irreversible part of valine catabolism, 3-hydroxyisobutyrate could be expected to be released from cells by transport across the mitochondrial and plasma membranes. This could indeed be demonstrated for cultured astroglial cells. Therefore, to assess the ability of neural cells to make use of this valine-derived carbon skeleton as a metabolic substrate for the generation of energy, we investigated the expression in cultured neural cells of the enzyme processing this hydroxy acid, 3-hydroxyisobutyrate dehydrogenase (HIBDH). To achieve this, HIBDH was purified from bovine liver to serve as antigen for the production of an antiserum. Affinity-purified antibodies against HIBDH specifically recognized the enzyme in liver and brain homogenates. Immunocytochemistry demonstrated the ubiquitous expression of HIBDH among cultured glial (astroglial, oligodendroglial, microglial, and ependymal cells) and neuronal cells. Using an RT-PCR technique, these findings were corroborated by the detection of HIBDH mRNA in these cells. Furthermore, immunofluorescence double-labeling of astroglial cells with antisera against HIBDH and the mitochondrial marker pyruvate dehydrogenase localized HIBDH to mitochondria. The expression of HIBDH in neural cells demonstrates their potential to utilize valine imported into the brain for the generation of energy.  相似文献   

14.
Some Sinorhizobium meliloti mutants in genes involved in isoleucine, valine, and leucine biosynthesis were previously described as being unable to induce nodule formation on host plants. Here, we present a reappraisal of the interconnection between the branched-chain amino acid biosynthesis pathway and the nodulation process in S. meliloti. We characterized the symbiotic phenotype of seven mutants that are auxotrophic for isoleucine, valine, or leucine in two closely related S. meliloti strains, 1021 and 2011. We showed that all mutants were similarly impaired for nodulation and infection of the Medicago sativa host plant. In most cases, the nodulation phenotype was fully restored by the addition of the missing amino acids to the plant growth medium. This strongly suggests that auxotrophy is the cause of the nodulation defect of these mutants. However, we confirmed previous findings that ilvC and ilvD2 mutants in the S. meliloti 1021 genetic background could not be restored to nodulation by supplementation with exogenous amino acids even though their Nod factor production appeared to be normal.  相似文献   

15.
Hindquarters from starved rats were perfused with plasma concentrations of amino acids, but without other added substrates. Release of amino acids was similar to that previously reported, but, if total amino acid changes were recorded, alanine and glutamine were not formed in excess of their occurrence in muscle proteins. In protein balance (excess insulin) there was no net formation of either alanine or glutamine, even though the branched-chain amino acids and methionine were consumed. If [U-14C]valine was present, radiolabelled 3-hydroxyisobutyrate and, to a lesser extent, 2-oxo-3-methylbutyrate accumulated and radiolabel was incorporated into citrate-cycle intermediates and metabolites closely associated with the citrate cycle (glutamine and glutamate, and, to a smaller extent, lactate and alanine). If a 2-chloro-4-methylvalerate was present to stimulate the branched-chain oxo acid dehydrogenase, flux through this step was accelerated, resulting in increased accumulation of 3-hydroxyisobutyrate, decreased accumulation of 2-oxo-3-methylbutyrate, and markedly increased incorporation of radiolabel (specific and total) into all measured metabolites formed after 3-hydroxyisobutyrate. It is concluded that: amino acid catabolism by skeletal muscle is confined to degradation of the branched-chain amino acids, methionine and those that are interconvertible with the citrate cycle; amino acid catabolism is relatively minor in supplying carbon for net synthesis of alanine and glutamine; and partial degradation products of the branched-chain amino acids are quantitatively significant substrates released from muscle for hepatic gluconeogenesis. For valine, 3-hydroxyisobutyrate appears to be quantitatively the most important intermediate released from muscle. A side path for inter-organ disposition of the branched-chain amino acids is proposed.  相似文献   

16.
Metabolism of branched-chain amino and 2-oxo acids was studied in the isolated perfused kidney. Significant amounts of 2-oxo acids were released by perfused kidney with all concentrations of amino acids tested (0.1-1.0 mM each), despite the high activity of branched-chain 2-oxo acid dehydrogenase in kidney. As perfusate valine concentration was increased from 0.2 to 1.0 mM, [1-14C]valine transamination (2-oxo acid oxidized + released) increased roughly linearly; [1-14C]valine oxidation, however, increased exponentially. Increasing perfusate concentration of 3-methyl-2-oxo[1-14C]butanoate from 0 to 1.0 mM resulted in a linear increase in the rate of its oxidation and a rise in perfusate valine concentration; at the same time significant decreases occurred in perfusate isoleucine and leucine concentrations, with corresponding increases in rates of release of their respective 2-oxo acids. Comparison of rates of oxidation of [1-14C]valine and 3-methyl-2-oxo[1-14C]butanoate suggests that 2-oxo acid arising from [1-14C]valine transamination has freer access to the 2-oxo acid dehydrogenase than has the 2-oxo acid from the perfusate. The observations indicate that, when branched-chain amino and 2-oxo acids are present in perfusate at near-physiological concentrations, rates of transamination of the amino and 2-oxo acids by isolated perfused kidney are greater than rates of oxidation.  相似文献   

17.
Aminooxyacetate, a known inhibitor of transaminase reactions and glycine decarboxylase, promotes rapid depletion of the free pools of serine and aspartate in nitrate grown Lemna minor L. This compound markedly inhibits the methionine sulfoximine-induced accumulation of free ammonium ions and greatly restricts the methionine sulfoximine-induced depletion of amino acids such as glutamate, alanine, and asparagine. These results suggest that glutamate, alanine, and asparagine are normally catabolized to ammonia by transaminase-dependent pathways rather than via dehydrogenase or amidohydrolase reactions. Aminooxyacetate does not inhibit the methionine sulfoximine-induced irreversible deactivation of glutamine synthetase in vivo, indicating that these effects cannot be simply ascribed to inhibition of methionine sulfoximine uptake by amino-oxyacetate. This transaminase inhibitor promotes extensive accumulation of several amino acids including valine, leucine, isoleucine, alanine, glycine, threonine, proline, phenylalanine, lysine, and tyrosine. Since the aminooxyacetate induced accumulations of valine, leucine, and isoleucine are not inhibited by the branched-chain amino acid biosynthesis inhibitor, chlorsulfuron, these amino acid accumulations most probably involve protein turnover. Depletions of soluble protein bound amino acids are shown to be approximately stoichiometric with the free amino acid pool accumulations induced by aminooxyacetate. Aminooxyacetate is demonstrated to inhibit the chlorsulfuron-induced accumulation of α-amino-n-butyrate in L. minor, supporting the notion that this amino acid is derived from transamination of 2-oxobutyrate.  相似文献   

18.
Branched-chain amino acids (primarily isoleucine) are important regulators of virulence and are converted to precursor molecules used to initiate fatty acid synthesis in Staphylococcus aureus. Defining how bacteria control their membrane phospholipid composition is key to understanding their adaptation to different environments. Here, we used mass tracing experiments to show that extracellular isoleucine is preferentially metabolized by the branched-chain ketoacid dehydrogenase complex, in contrast to valine, which is not efficiently converted to isobutyryl-CoA. This selectivity creates a ratio of anteiso:iso C5-CoAs that matches the anteiso:iso ratio in membrane phospholipids, indicating indiscriminate utilization of these precursors by the initiation condensing enzyme FabH. Lipidomics analysis showed that removal of isoleucine and leucine from the medium led to the replacement of phospholipid molecular species containing anteiso/iso 17- and 19-carbon fatty acids with 18- and 20-carbon straight-chain fatty acids. This compositional change is driven by an increase in the acetyl-CoA:C5-CoA ratio, enhancing the utilization of acetyl-CoA by FabH. The acyl carrier protein (ACP) pool normally consists of odd carbon acyl-ACP intermediates, but when branched-chain amino acids are absent from the environment, there was a large increase in even carbon acyl-ACP pathway intermediates. The high substrate selectivity of PlsC ensures that, in the presence or the absence of extracellular Ile/Leu, the 2-position is occupied by a branched-chain 15-carbon fatty acid. These metabolomic measurements show how the metabolism of isoleucine and leucine, rather than the selectivity of FabH, control the structure of membrane phospholipids.  相似文献   

19.
家蚕体内因缺乏维生素B6而引起的若干代谢变动   总被引:4,自引:2,他引:2  
张剑韵  黄龙全 《昆虫学报》2003,46(4):436-440
采用不含桑叶粉末、以去维生素牛乳酪蛋白为蛋白源的准合成饲料饲育家蚕Bombyx mori 5龄幼虫,探讨了缺乏维生素B6(VB6)对蚕体氨基酸代谢、脂肪酸代谢以及转氨酶活力的影响。缺乏VB6引起支链氨基酸分解代谢受阻,幼虫体液中大量积累亮氨酸、缬氨酸和异亮氨酸。同时因绢丝腺发育停滞,丝氨酸也在体液中积累。另一方面,缺乏VB6幼虫体液中赖氨酸、脯氨酸、精氨酸、甲硫氨酸和谷氨酸含量减少,其中赖氨酸尤为突出。推测缺乏VB6引起赖氨酸分解代谢亢进。结果还表明,缺乏VB6幼虫体内脂肪酸代谢异常,谷丙转氨酶活力显著低下。  相似文献   

20.
Hindquarters from starved rats were perfused without substrates but in the presence of an O2- and CO2-carrying perfluorocarbon emulsion to evaluate principally the metabolism of individual endogenous and protein-derived amino acids by this muscle preparation. This experimental model was shown, by a battery of metabolite measurements, to maintain cellular homoeostasis for at least 2h. The net appearance of most amino acids closely approximated their frequency of occurrence in muscle proteins, showing that they are not significantly metabolized. Exceptions were the branched-chain amino acids, methionine and those amino acids that are interconvertible with intermediates of the citrate cycle and pyruvate through coupled transaminations. The evidence indicates that only valine, isoleucine, aspartate and probably methionine can be catabolized by skeletal muscle to provide carbon precursors for glutamate/glutamine and alanine that are formed de novo by protein-catabolic muscle. The protein-sparing effects of insulin and leucine were confirmed. Although each decreased proteolysis and the net appearance of free amino acids, they were generally without effect on the ratios of amino acids formed. 2-Chloro-4-methylvalerate selectively stimulated the removal rate for the branched-chain amino acids, confirming the idea that the branched-chain oxo acid dehydrogenase normally limits the rate of their oxidation by muscle. It is also concluded that, since alanine was not formed in excess of that found in muscle proteins when no glucose was added as substrate, the excess of alanine (carbon) released from muscles in other studies is derived to a large extent, but not exclusively, from preformed carbohydrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号