首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The function of articular cartilage as an avascular tissue is mainly served by collagen type II and proteoglycan molecules. Within this matrix homeostasis between production and breakdown of the matrix is exceptionally sensitive.The current study was conducted to identify regional differences in specific alterations in cartilage composition during the osteoarthritic process of the human knee joint. Therefor the changes in the expression of the key molecules of the extracellular matrix were measured in dependence of the anatomical side (femoral vs tibial) and associated with immunohistochemistry and quantitative measurement.60 serial osteochondral femoral condyle and the tibial plateau samples of patients undergoing implantation of total knee endoprosthesis of areas showing mild (Group A, macroscopically ICRS grade 1b) respectively advanced (Group B, macroscopically ICRS grade 3a/3b) (30 each) osteoarthritis according to the histological-histochemical grading system (HHGS) were compared with 20 healthy biopsies with immunohistochemistry and histology. We quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorometrically.In group A slightly increased colour intensity was found for collagen II in deeper layers, suggesting a persisting but initially still intact repair process. But especially on the medial tibia plateau the initial Col II increase in gene expression is followed by a decrease leading to the lowest over all Col II expression on the medial plateau, here especially in the central part. There in late stage diseases the collagen type I expression was also more pronounced. Markedly decreased safranin O staining intensity was observed in the radial zone and less reduced intensity in the transitional zone with loss of zonal anatomy in 40% of the specimens in group A and all specimens in group B. Correlation between colorometrically analysed proteoglycan GAG content and aggrecan Real Time PCR is mainly weak.Tibial and femoral cartilage in contrast to patellar cartilage both are preferential exposed to compressive stresses, but presence of menisci affects the load distribution at the tibial side, which creates varying conditions for the different cartilage surfaces in the knee.As directly measured Poissońs ratio in tibial cartilage is higher but Youn?s modulus is lower than in femoral cartilage, different resulting feedback amplification loops interact with proceeding cartilage damage. The initial loss of aggrecan may support Matrix metalloproteinases (Mmps) in the access to the collagen network and the considerably differing mechanical properties at both joint surfaces result in varying increased synthesis and release of matrix degrading enzymes.The present study has identified a selection of events which reflect the response of cartilage structure and composite, chondrocytes itself and their productivity to changes in mechanical stress depending on the anatomical site.  相似文献   

2.
The objective of this study was to determine whether a fragment(s) of type II collagen can induce cartilage degradation. Fragments generated by cyanogen bromide (CB) cleavage of purified bovine type II collagen were separated by HPLC. These fragments together with selected overlapping synthetic peptides were first analysed for their capacity to induce cleavage of type II collagen by collagenases in chondrocyte and explant cultures of healthy adult bovine articular cartilage. Collagen cleavage was measured by immunoassay and degradation of proteoglycan (mainly aggrecan) was determined by analysis of cleavage products of core protein by Western blotting. Gene expression of matrix metalloproteinases MMP-13 and MMP-1 was measured using Real-time PCR. Induction of denaturation of type II collagen in situ in cartilage matrix with exposure of the CB domain was identified with a polyclonal and monoclonal antibodies that only react with this domain in denatured but not native type II collagen. As well as the mixture of CB fragments and peptide CB12, a single synthetic peptide CB12-II (residues 195-218), but not synthetic peptide CB12-IV (residues 231-254), potently and consistently induced in explant cultures at 10 microM and 25 microM, in a time, cell and dose dependent manner, collagenase-induced cleavage of type II collagen accompanied by upregulation of MMP-13 expression but not MMP-1. In isolated chondrocyte cultures CB12-II induced very limited upregulation of MMP-13 as well as MMP-1 expression. Although this was accompanied by concomitant induction of cleavage of type II collagen by collagenases, this was not associated by aggrecan cleavage. Peptide CB12-IV, which had no effect on collagen cleavage, clearly induced aggrecanase specific cleavage of the core protein of this proteoglycan. Thus these events involving matrix molecule cleavage can importantly occur independently of each other, contrary to popular belief. Denaturation of type II collagen with exposure of the CB12-II domain was also shown to be much increased in osteoarthritic human cartilage compared to non-arthritic cartilage. These observations reveal that peptides of type II collagen, to which there is increased exposure in osteoarthritic cartilage, can when present in sufficient concentration induce cleavage of type II collagen (CB12-II) and aggrecan (CB12-IV) accompanied by increased expression of collagenases. Such increased concentrations of denatured collagen are present in adult and osteoarthritic cartilages and the exposure of chondrocytes to the sequences they encode, either in soluble or more likely insoluble form, may therefore play a role in the excessive resorption of matrix molecules that is seen in arthritis and development.  相似文献   

3.
We show that proteomic analysis can be applied to study cartilage pathophysiology. Proteins secreted by articular cartilage were analyzed by two-dimensional SDS-PAGE and mass spectrometry. Cartilage explants were cultured in medium containing [35S]methionine/cysteine to radiolabel newly synthesized proteins. To resolve the cartilage proteins by two-dimensional electrophoresis, it was necessary to remove the proteoglycan aggrecan by precipitation with cetylpyridinium chloride. 50-100 radiolabeled protein spots were detected on two-dimensional gels of human cartilage cultures. Of 170 silver-stained proteins identified, 19 were radiolabeled, representing newly synthesized gene products. Most of these were known cartilage constituents. Several nonradiolabeled cartilage proteins were also detected. The secreted protein pattern of explants from 12 osteoarthritic joints (knee, hip, and shoulder) and 14 nonosteoarthritic adult joints were compared. The synthesis of type II collagen was strongly up-regulated in osteoarthritic cartilage. Normal adult cartilage synthesized little or no type II collagen in contrast to infant and juvenile cartilage. Potential regulatory molecules novel to cartilage were identified; pro-inhibin betaA and processed inhibin betaA (which dimerizes to activin A) were produced by all the osteoarthritic samples and half of the normals. Connective tissue growth factor and cytokine-like protein C17 (previously only identified as an mRNA) were also found. Activin induced the tissue inhibitor for metalloproteinases-1 in human chondrocytes. Its expression was induced in isolated chondrocytes by growth factors or interleukin-1. We conclude that type II collagen synthesis in articular cartilage is down-regulated at skeletal maturity and reactivated in osteoarthritis in attempted repair and that activin A may be an anabolic factor in cartilage.  相似文献   

4.
The ability of insulin-like growth factor I (IGF-I) to stimulate cartilage matrix synthesis is reduced in aged and osteoarthritic cartilage. Aging and osteoarthritis are associated with an increase in reactive oxygen species, which we hypothesized would interfere with normal IGF-I signaling. We compared IGF-I signaling in normal and osteoarthritic human articular chondrocytes and investigated the effects of oxidative stress induced by tert-butylhydroperoxide (tBHP). In normal human chondrocytes, IGF-I initiated a strong and sustained phosphorylation of IRS-1 (Tyr-612) and Akt (Ser-473) and transient ERK phosphorylation. In contrast, in osteoarthritic chondrocytes, which possessed elevated basal IRS-1 (Ser-312) and ERK phosphorylation, IGF-I failed to stimulate IRS-1 (Tyr-612) or Akt phosphorylation. In normal human chondrocytes, tBHP triggered strong IRS-1 (Ser-312 and Ser-616) and ERK phosphorylation and inhibited IGF-I-induced IRS-1 (Tyr-612) and Akt phosphorylation. Lentivirus-mediated overexpression of constitutively active (CA) Akt significantly enhanced proteoglycan synthesis, whereas both dominant negative Akt and CA MEK inhibited proteoglycan synthesis. CA Akt also promoted type II collagen and Sox9 expression, whereas tBHP treatment and CA MEK inhibited aggrecan, collagen II, and Sox9 mRNA expression. In osteoarthritic chondrocytes, the antioxidants Mn(III) tetrakis(4-benzoic acid)porphyrin and N-acetylcysteine increased the ratio of Akt to ERK phosphorylation and promoted IGF-I-mediated proteoglycan synthesis. Chemical inhibition of ERK significantly enhanced IGF-I phosphorylation of Akt and alleviated tBHP inhibition of Akt phosphorylation. These results demonstrate opposing roles for phosphatidylinositol 3-kinase-Akt and MEK-ERK in cartilage matrix synthesis and suggest that elevated levels of reactive oxygen species cause chondrocyte IGF-I resistance by altering the balance of Akt to ERK activity.  相似文献   

5.
Currently, autologous chondrocyte transplantation (ACT) is used to treat traumatic cartilage damage or osteochondrosis dissecans, but not degenerative arthritis. Since substantial refinements in the isolation, expansion and transplantation of chondrocytes have been made in recent years, the treatment of early stage osteoarthritic lesions using ACT might now be feasible. In this study, we determined the gene expression patterns of osteoarthritic (OA) chondrocytes ex vivo after primary culture and subculture and compared these with healthy chondrocytes ex vivo and with articular chondrocytes expanded for treatment of patients by ACT. Gene expression profiles were determined using quantitative RT-PCR for type I, II and X collagen, aggrecan, IL-1β and activin-like kinase-1. Furthermore, we tested the capability of osteoarthritic chondrocytes to generate hyaline-like cartilage by implanting chondrocyte-seeded collagen scaffolds into immunodeficient (SCID) mice. OA chondrocytes ex vivo showed highly elevated levels of IL-1β mRNA, but type I and II collagen levels were comparable to those of healthy chondrocytes. After primary culture, IL-1β levels decreased to baseline levels, while the type II and type I collagen mRNA levels matched those found in chondrocytes used for ACT. OA chondrocytes generated type II collagen and proteoglycan-rich cartilage transplants in SCID mice. We conclude that after expansion under suitable conditions, the cartilage of OA patients contains cells that are not significantly different from those from healthy donors prepared for ACT. OA chondrocytes are also capable of producing a cartilage-like tissue in the in vivo SCID mouse model. Thus, such chondrocytes seem to fulfil the prerequisites for use in ACT treatment.  相似文献   

6.
Recent advances in tissue engineering offer considerable promise for the repair of focal lesions in articular cartilage. Here we describe (1) the macromolecular organization of tissue-engineered neocartilage grafts at light and electron microscopic levels, (2) their in vitro development, and (3) the effect of chondrocyte dedifferentiation, induced by monolayer expansion, on their resultant structure. We show that grafts produced from primary cultures of chondrocytes are hyaline in appearance with identifiable zonal strata as evidenced by cell morphology, matrix organization, and immunohistochemical composition. Like native articular cartilage, their surface zone contains type I collagen, surface zone proteoglycan, biglycan and decorin with type II collagen, aggrecan, chondroitin sulfate, chondroitin-4-sulfate, and keratan sulfate, becoming more prominent with depth. Assessment of cell viability by Live/Dead staining and cell-cycle analysis with BrDU suggest that the in vitro tissue has a high cellular turnover and develops through both appositional and interstitial growth mechanisms. Meanwhile, cell-tracker studies with CMFDA (5-chloromethyl-fluorescein diacetate) demonstrate that cell sorting in vitro is not involved in their zonal organization. Finally, passage expansion of chondrocytes in monolayer culture causes progressive reductions in graft thickness, loss of zonal architecture, and a more fibrocartilaginous tissue histology, consistent with a dedifferentiating chondrocyte phenotype.  相似文献   

7.
8.
Utilizing ATDC5 murine chondrogenic cells and human articular chondrocytes, this study sought to develop facile, reproducible three-dimensional models of cartilage generation with the application of tissue engineering strategies, involving biodegradable poly(glycolic acid) scaffolds and rotating wall bioreactors, and micromass pellet cultures. Chondrogenic differentiation, assessed by histology, immunohistochemistry, and gene expression analysis, in ATDC5 and articular chondrocyte pellets was evident by the presence of distinct chondrocytes, expressing Sox-9, aggrecan, and type II collagen, in lacunae embedded in a cartilaginous matrix of type II collagen and proteoglycans. Tissue engineered explants of ATDC5 cells were reminiscent of cartilaginous structures composed of numerous chondrocytes, staining for typical chondrocytic proteins, in lacunae embedded in a matrix of type II collagen and proteoglycans. In comparison, articular chondrocyte explants exhibited areas of Sox-9, aggrecan, and type II collagen-expressing cells growing on fleece, and discrete islands of chondrocytic cells embedded in a cartilaginous matrix.  相似文献   

9.
Reexpression of aggrecan and type II collagen genes in dedifferentiated adult human articular chondrocytes (AHAC) in suspension culture varied widely depending on the specific lot of bovine serum used to supplement the culture medium. Some lots of serum provided strong induction of aggrecan and type II collagen expression by AHAC while others did not stimulate significant production of these hyaline cartilage extracellular matrix molecules even following several weeks in culture. Addition of 50 ng/ml insulin-like growth factor-I (IGF-I) to a deficient serum lot significantly enhanced its ability to induce aggrecan and type II collagen mRNA. Given this observation, IGF-I and other growth factors were tested in defined serum-free media for their effects on the expression of these genes. Neither IGF-I nor insulin nor transforming growth factor β (TGF-β) alone stimulated induction of aggrecan or type II collagen production by dedifferentiated AHAC. However, TGF-β1 or TGF-β2 combined with IGF-I or insulin provided a strong induction as demonstrated by RNase protection and immunohistochemical assays. Interestingly, type I collagen, previously shown to be downregulated in serum supplemented suspension cultures of articular chondrocytes, persisted for up to 12 weeks in AHAC cultured in defined medium supplemented with TGF-β and IGF-I.  相似文献   

10.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

11.
12.

Introduction

Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model.

Methods

Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material.

Results

Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures. Although TGF-β1 stimulation showed protective effects on matrix integrity, effects on other parameters were limited.

Conclusions

The present bovine cartilage punch model represents a robust, reproducible and highly suitable tool for the long-term culture of cartilage, maintaining matrix integrity and homoeostasis. As an alternative to animal studies, this model may closely reflect early stages of cartilage regeneration, allowing the evaluation of promising biomaterials with/without chondrogenic factors.  相似文献   

13.
Large and small proteoglycans are essential components of articular cartilage. How to induce chondrocytes to repair damaged cartilage with normal ratios of matrix components after their loss due to degenerative joint disease has been a major research focus. We have developed immortalized human chondrocyte cell lines for examining the regulation of cartilage-specific matrix gene expression. However, the decreased synthesis and deposition of cartilage matrix associated with a rapid rate of proliferation has presented difficulties for further examination at the protein level. In these studies, proteoglycan synthesis was characterized in two chondrocyte cell lines, T/C-28a2 and tsT/AC62, derived, respectively, from juvenile costal and adult articular cartilage, under culture conditions that either promoted or decreased cell proliferation. Analysis of proteo[36S]glycans by Sepharose CL-4B chromatography and SDS-PAGE showed that the large proteoglycan aggrecan and the small, leucine-rich proteoglycans, decorin and biglycan, were produced under every culture condition studied. In monolayer cultures, a high initial cell density and conditions that promoted proliferation (presence of serum for T/C-28a2 cells or permissive temperature for the temperature-sensitive tsT/AC62 cells) favored cell survival and ratios of proteoglycans expected for differentiated chondrocytes. However, the tsT/AC62 cells produced more proteoglycans at the nonpermissive temperature. Culture of cells suspended in alginate resulted in a significant decrease in proteoglycan production in all culture conditions. While the tsT/AC62 cells continued to produce a larger amount of aggrecan than small proteoglycans, the T/C-28a2 cells lost the ability to produce significant amounts of aggrecan in alginate culture. In addition, our data indicate that immortalized chondrocytes may alter their ability to retain pericellular matrix under changing culture conditions, although the production of the individual matrix components does not change. These findings provide critical information that will assist in the development of a reproducible chondrocyte culture model for the study of regulation of proteoglycan biosynthesis in cartilage.  相似文献   

14.
The importance of biomechanical forces in regulating normal chondrocyte metabolism is well established and the mechanisms whereby mechanical forces are transduced into biochemical responses by chondrocytes are beginning to be understood. Previous studies have indicated that cyclical mechanical stimulation induces increased aggrecan gene expression in normal but not osteoarthritic chondrocytes in monolayer. It remains unclear, however, whether these effects on gene expression are associated with changes in proteoglycan production and whether any changes in proteoglycan expression is dependent on integrins or integrin associated proteins. Normal and osteoarthritic articular chondrocytes in monolayer were exposed to 0.33 Hz mechanical stimulation for 20 min in the absence or presence of function modifying anti-integrin antibodies. Following stimulation GAG and proteoglycan (PG) synthesis was assessed by DMMB assay and western blotting. Mechanical stimulation of normal chondrocytes resulted in increased GAG synthesis that was blocked by the presence of antibodies to alpha5 and alphaVbeta5 integrins and CD47. Electrophoretic patterns of PGs released from normal chondrocytes following mechanical stimulation showed an increase in newly-synthesized aggrecan that was not fragmented or degraded. Chondrocytes from osteoarthritic cartilage showed lower levels of GAG production when compared to normal chondrocytes and synthesis was not influenced by mechanical stimulation. These studies show that chondrocytes derived from normal and OA cartilage have different matrix production responses to mechanical stimulation and suggest previously unrecognised roles for alphaVbeta5 integrin in regulation of chondrocyte responses to biomechanical stimulation.  相似文献   

15.
16.
Liu X  Sun JQ  Heggeness MH  Yeh ML  Luo ZP 《Biorheology》2006,43(3-4):183-190
Proteoglycan aggregate is the primary component in articular cartilage responsible for resisting compressive loading. It consists of a core molecule of hyaluronan and a number of side chains of aggrecan bound to hyaluronan non-covalently. The loss of aggrecan from articular cartilage is considered to be a major factor in the development of osteoarthritis. Though enzymatic digestion of aggrecan is believed to be responsible for the release of aggrecan from osteoarthritic cartilage, other mechanisms, such as direct force-mediated detachment of aggrecan from hyaluronan may also be involved. In this study, the rupture force of the single bond between hyaluronan and aggrecan in articular cartilage was directly quantified using experimental measurement and Monte Carlo simulation. Low rupture force of this bond, as determined in this study suggested a possible direct force-mediated detachment of aggrecan from proteoglycan aggregate in osteoarthritic cartilage.  相似文献   

17.
Osteoarthritis is characterized by a loss of articular cartilage due at least in part to the action of degradative enzymes secreted by chondrocytes. We have investigated the effect of type II collagen from cartilage and interleukin 1 on collagenase production in cultures of rabbit articular chondrocytes. Interleukin 1 alone stimulated the chondrocytes to secrete collagenase but this response was increased as much as fivefold by the addition of rabbit type II collagen. Bovine type II and chick type I collagens were also stimulatory. The native form of the collagens was not required since denatured collagens and purified chick type II alpha chains were effective. The observed effects of collagens and interleukin 1 may contribute to the progressive nature of osteoarthritis.  相似文献   

18.
Tissue engineering of articular cartilage from chondrocytes or stem cells is considered to be a potential aspect in the treatment of cartilage defects. In order to optimize culture conditions the influence of low oxygen tension (5%) - single or in combination with intermittent hydrostatic pressure (HP: 30/2 min on/off loading; 0.2 MPa) - on the biosynthetic activity (sulfate and proline incorporation) of human osteoarthritic chondrocytes cultured on collagen I/III membranes was investigated. Additionally, chondrogenesis from high density or monolayer cultures of bovine adherent bone marrow cells (aBMC) with and without chondrogenic medium supplements (CM) was analyzed by RT-PCR (mRNA expression of aggrecan and collagen type II). We could show that low oxygen tension increases significantly the biosynthesis of collagen I/III membrane-associated chondrocytes and even higher under co-stimulation with HP. While there is no chondrogenesis in monolayer cultures, CM induces expression of cartilage matrix molecules in high density cultures of aBMC which is even increased under the influence of low oxygen tension. Both, low oxygen tension and HP without CM are alone not sufficient stimuli for chondrogenesis. It can be concluded that low oxygen tension and HP might be useful tools in cartilage tissue engineering and that these physico-chemical factors promote but do not induce chondrogenesis under the given conditions.  相似文献   

19.
The interaction of the cell with its surrounding extracellular matrix (ECM) has a major effect on cell metabolism. We have previously shown that chondrons, chondrocytes with their in vivo-formed pericellular matrix, can be enzymatically isolated from articular cartilage. To study the effect of the native chondrocyte pericellular matrix on ECM production and assembly, chondrons were compared with chondrocytes isolated without any pericellular matrix. Immediately after isolation from human cartilage, chondrons and chondrocytes were centrifuged into pellets and cultured. Chondron pellets had a greater increase in weight over 8 weeks, were more hyaline appearing, and had more type II collagen deposition and assembly than chondrocyte pellets. Minimal type I procollagen immunofluorescence was detected for both chondron and chondrocyte pellets. Chondron pellets had a 10-fold increase in proteoglycan content compared with a six-fold increase for chondrocyte pellets over 8 weeks (P<0.0001). There was no significant cell division for either chondron or chondrocyte pellets. The majority of cells within both chondron and chondrocyte pellets maintained their polygonal or rounded shape except for a thin, superficial edging of flattened cells. This edging was similar to a perichondrium with abundant type I collagen and fibronectin, and decreased type II collagen and proteoglycan content compared with the remainder of the pellet. This study demonstrates that the native pericellular matrix promotes matrix production and assembly in vitro. Further, the continued matrix production and assembly throughout the 8-week culture period make chondron pellet cultures valuable as a hyaline-like cartilage model in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号