首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The "classical" organic anion secretory pathway of the renal proximal tubule is critical for the renal excretion of the prototypic organic anion, para-aminohippurate, as well as of a large number of commonly prescribed drugs among other significant substrates. Organic anion transporter 1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J. G., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478), has physiological properties consistent with a role in this pathway. However, several other transporters (e.g. OAT2, OAT3, and MRP1) have also been proposed as important PAH transporters on the basis of in vitro studies; therefore, the relative contribution of OAT1 has remained unclear. We have now generated a colony of OAT1 knock-out mice, permitting elucidation of the role of OAT1 in the context of these other potentially functionally redundant transporters. We find that the knock-out mice manifest a profound loss of organic anion transport (e.g. para-aminohippurate) both ex vivo (in isolated renal slices) as well as in vivo (as indicated by loss of renal secretion). In the case of the organic anion, furosemide, loss of renal secretion in the knock-out results in impaired diuretic responsiveness to this drug. These results indicate a critical role for OAT1 in the functioning of the classical pathway. In addition, we have determined the levels of approximately 60 endogenous organic anions in the plasma and urine of wild-type and knock-out mice. This has led to identification of several compounds with significantly higher plasma concentrations and/or lower urinary concentrations in knock-out mice, suggesting the involvement of OAT1 in their renal secretion. We have also demonstrated in xenopus oocytes that some of these compounds interact with OAT1 in vitro. Thus, these latter compounds might represent physiological substrates of OAT1.  相似文献   

2.
3.
Sex hormone-regulated renal transport of perfluorooctanoic acid   总被引:15,自引:0,他引:15  
The biological half-life (t1/2) of perfluorooctanoic acid (PFOA) in male rats is 70 times longer than that in female rats. The difference is mainly due to the difference in renal clearance (CL(R)), which was significantly reduced by probenecid, suggesting that PFOA is excreted by organic anion transporter(s). Castration of male rats caused a 14-fold increase in the CL(R) of PFOA, which made it comparable with that of female rats. The elevated PFOA CL(R) in castrated males was reduced by treating them with testosterone. Treatment of male rats with estradiol increased the CL(R) of PFOA. In female rats, ovariectomy caused a significant increase in CL(R) of PFOA, which was reduced by estradiol treatment. Treatments of female rats with testosterone reduced the CL(R) of PFOA as observed in castrated male rats. To identify the transporter molecules that are responsible for PFOA transport in rat kidney, renal mRNA levels of organic anion transporter 1 (OAT1), OAT2, OAT3, organic anion transporting polypeptide 1 (oatp1), oatp2 and kidney specific organic anion transporter (OAT-K) were determined in male and female rats under various hormonal states and compared with the CL(R) of PFOA. The level of OAT2 mRNA in male rats was only 13% that in female rats. Castration or estradiol treatment increased the level of OAT2 mRNA whereas treatment of castrated male rats with testosterone reduced it. In contrast to OAT2, mRNA levels of both oatp1 and OAT-K were significantly higher in male rats compared with female rats. Castration or estradiol treatment caused a reduction in the levels of mRNA of oatp1 and OAT-K in male rats. Ovariectomy of female rats significantly increased the level of OAT3 mRNA. Multiple regression analysis suggests that the change in the CL(R) of PFOA is, at least in part, due to altered expression of OAT2 and OAT3.  相似文献   

4.
Urinary tract obstruction is an important cause of acute renal failure. Several abnormalities in renal tubular function may occur in obstructive nephropathy. The tubular secretion of organic anions is an important function of the kidney that eliminates potentially toxic organic anions from the body, however, the mechanisms involved in organic anions renal elimination in rats with bilateral ureteral obstruction (BUO) have not been elucidated. In this study, it was evaluated the renal handling of p-aminohippurate (PAH) in adult male Wistar rats with BUO. A diminished renal clearance of PAH was observed in BUO rats as consequence of a diminution in the secreted load of this organic anion. The increase in the abundance of organic anions transporter 1 (OAT1) and the absence of modification in cortical renal blood flow, measured with fluorescence microspheres, do not explain the altered secretion of PAH. The diminished Na,K-ATPase activity in cortex from obstructed kidneys might condition OAT1 function. Additionally, it is also possible to conclude that in the presence of BUO, PAH clearance is not a good estimate of renal plasma flow.  相似文献   

5.
Whether organic anion and cation transporters are involved in the renal excretion of xanthine derivatives, 3-methylxanthie and enprofylline, remains unclear. In this study, we have investigated the effects of typically predominant substrates for organic anion and cation transporters on the tubular secretion of 3-methylxanthine and enprofylline in rats. In the renal clearance experiments using typical substrates for organic anion transporters, probenecid and p-aminohippurate, probenecid (20 mg/kg), but not p-aminohippurate (100 mg/kg), significantly decreased the renal clearance and clearance ratio of 3-methylxanthine and enprofylline. The typical substrates for organic cation transport systems, tetraethylammonium (30.6 mg/kg) and cimetidine (50 or 100 mg/kg), significantly decreased the renal clearance and clearance ratio of 3-methylxanthine and enprofylline. These results suggest that the renal secretory transport of 3-methylxanthine and enprofylline are mediated by probenecid-, cimetidine- and tetraethylammonium-sensitive transport systems. Uric acid, an organic anion, significantly inhibited the renal secretion of 3-methylxanthine, but not enprofylline, suggesting that the renal tubular transport of 3-methylxanthine is also mediated via uric acid-sensitive transport system. These findings suggest the possibility that both organic anion and cation transporters are, at least, involved in the renal tubular transport of 3-methylxanthine and enprofylline in rats.  相似文献   

6.
Uric acid (urate) is the end product of purine metabolism in humans. Human kidneys reabsorb a large proportion of filtered urate. This extensive renal reabsorption, together with the fact that humans do not possess uricase that catalyzes the biotransformation of urate into allantoin, results in a higher plasma urate concentration in humans compared to other mammals. A major determinant of plasma urate concentration is renal excretion as a function of the balance between reabsorption and secretion. We previously identified that renal urate absorption in proximal tubular epithelial cells occurs mainly via apical urate/anion exchanger, URAT1/SLC22A12, and by facilitated diffusion along the trans-membrane potential gradient by the basolateral voltage-driven urate efflux transporter, URATv1/SLC2A9/GLUT9. In contrast, the molecular mechanism by which renal urate secretion occurs remains elusive. Recently, we reported a newly characterized human voltage-driven drug efflux transporter, hNPT4/SLC17A3, which functions as a urate exit pathway located at the apical side of renal proximal tubules. This transporter protein has been hypothesized to play an important role with regard to net urate efflux. An in vivo role of hNPT4 is supported by the fact that missense mutations in SLC17A3 present in hyperuricemia patients with urate underexcretion abolished urate efflux capacity in vitro. Herein, we report data demonstrating that loop diuretics and thiazide diuretics substantially interact with hNPT4. These data provide molecular evidence for loop and thiazide-diuretics-induced hyperuricemia. Thus, we propose that hNPT4 is an important transepithelial proximal tubular transporter that transports diuretic drugs and operates functionally with basolateral organic anion transporters 1/3 (OAT1/OAT3).  相似文献   

7.
The molecular basis of the transport of organic ions (which include such medically important compounds as drugs, toxins, and metabolites) has been intensively studied ever since the identification of the prototypical anion and cation transporters, OAT1 (originally cloned by us as NKT) and OCT1. Here we report the cloning of two novel putative organic ion transporters with 12 predicted membrane spanning segments that are most homologous to mammalian OCTNs (carnitine transporters) and to the Drosophila putative transporter, Orct, an intriguing correspondence that led us to name our sequences Fly-like putative transporters (Flipts). Another transporter we cloned has recently been identified as OAT5. Inclusion of Flipts reveals that the organic ion transporter family tree has trifurcated into three branches, one bearing Flipts, OCTNs, and fly transporters, and the other two bearing OATs and OCTs. Flipts are widely expressed in adult kidney, brain, muscle, and other tissues; in contrast, OAT1 is largely in kidney, and OAT5, in liver. In the embryo as well, Flipts are broadly distributed, whereas OAT5 was found only in fetal liver. Flipt expression patterns resemble those of the phylogenetically related OCTNs, suggesting that Flipts might also participate in carnitine transport, particularly in brain, which has relatively high Flipt expression, including EST matches from amygdala, hippocampus, and hypothalamus.  相似文献   

8.
Renal proximal tubules secrete diverse organic anions (OA) including widely prescribed anionic drugs. Here, we review the molecular properties of cloned transporters involved in uptake of OA from blood into proximal tubule cells and provide extensive lists of substrates handled by these transport systems. Where tested, transporters have been immunolocalized to the basolateral cell membrane. The sulfate anion transporter 1 (sat-1) cloned from human, rat and mouse, transported oxalate and sulfate. Drugs found earlier to interact with sulfate transport in vivo have not yet been tested with sat-1. The Na+-dicarboxylate cotransporter 3 (NaDC-3) was cloned from human, rat, mouse and flounder, and transported three Na+ with one divalent di- or tricarboxylate, such as citric acid cycle intermediates and the heavy metal chelator 2,3-dimercaptosuccinate (succimer). The organic anion transporter 1 (OAT1) cloned from several species was shown to exchange extracellular OA against intracellular α-ketoglutarate. OAT1 translocated, e.g., anti-inflammatory drugs, antiviral drugs, β-lactam antibiotics, loop diuretics, ochratoxin A, and p-aminohippurate. Several OA, including probenecid, inhibited OAT1. Human, rat and mouse OAT2 transported selected anti-inflammatory and antiviral drugs, methotrexate, ochratoxin A, and, with high affinities, prostaglandins E2 and F. OAT3 cloned from human, rat and mouse showed a substrate specificity overlapping with that of OAT1. In addition, OAT3 interacted with sulfated steroid hormones such as estrone-3-sulfate. The driving forces for OAT2 and OAT3, the relative contributions of all OA transporters to, and the impact of transporter regulation by protein kinases on renal drug excretion in vivo must be determined in future experiments. Electronic Publication  相似文献   

9.
Role of glycosylation in the organic anion transporter OAT1   总被引:1,自引:0,他引:1  
Organic anion transporters (OAT) play essential roles in the body disposition of clinically important anionic drugs, including antiviral drugs, antitumor drugs, antibiotics, antihypertensives, and anti-inflammatories. We reported previously (Kuze, K., Graves, P., Leahy, A., Wilson, P., Stuhlmann, H., and You, G. (1999) J. Biol. Chem. 274, 1519-1524) that tunicamycin, an inhibitor of asparagine-linked glycosylation, significantly inhibited organic anion transport in COS-7 cells expressing a mouse organic anion transporter (mOAT1), suggesting an important role of glycosylation in mOAT1 function. In the present study, we investigated the effect of disrupting putative glycosylation sites in mOAT1 as well as its human counterpart, hOAT1, by mutating asparagine to glutamine and assessing mutant transporters in HeLa cells. We showed that the putative glycosylation site Asp-39 in mOAT1 was not glycosylated but the corresponding site (Asp-39) in hOAT1 was glycosylated. Disrupting Asp-39 resulted in a complete loss of transport activity in both mOAT1 and hOAT1 without affecting their cell surface expression, suggesting that the loss of function is not because of deglycosylation of Asp-39 per se but rather is likely because of the change of this important amino acid critically involved in the substrate binding. Single replacement of asparagines at other sites had no effect on transport activity indicating that glycosylation at individual sites is not essential for OAT function. In contrast, a simultaneous replacement of all asparagines in both mOAT1 and hOAT1 impaired the trafficking of the transporters to the plasma membrane. In summary, we provided the evidence that 1) Asp-39 is crucially involved in substrate recognition of OAT1, 2) glycosylation at individual sites is not required for OAT1 function, and 3) glycosylation plays an important role in the targeting of OAT1 onto the plasma membrane. This study is the first molecular identification and characterization of glycosylation of OAT1 and may provide important insights into the structure-function relationships of the organic anion transporter family.  相似文献   

10.
Tubular secretion of the organic cation, creatinine, limits its value as a marker of glomerular filtration rate (GFR) but the molecular determinants of this pathway are unclear. The organic anion transporters, OAT1 and OAT3, are expressed on the basolateral membrane of the proximal tubule and transport organic anions but also neutral compounds and cations. Here, we demonstrate specific uptake of creatinine into mouse mOat1- and mOat3-microinjected Xenopus laevis oocytes at a concentration of 10 μM (i.e., similar to physiological plasma levels), which was inhibited by both probenecid and cimetidine, prototypical competitive inhibitors of organic anion and cation transporters, respectively. Renal creatinine clearance was consistently greater than inulin clearance (as a measure of GFR) in wild-type (WT) mice but not in mice lacking OAT1 (Oat1-/-) and OAT3 (Oat3-/-). WT mice presented renal creatinine net secretion (0.23 ± 0.03 μg/min) which represented 45 ± 6% of total renal creatinine excretion. Mean values for renal creatinine net secretion and renal creatinine secretion fraction were not different from zero in Oat1-/- (-0.03 ± 0.10 μg/min; -3 ± 18%) and Oat3-/- (0.01 ± 0.06 μg/min; -6 ± 19%), with greater variability in Oat1-/-. Expression of OAT3 protein in the renal membranes of Oat1-/- mice was reduced to ~6% of WT levels, and that of OAT1 in Oat3-/- mice to ~60%, possibly as a consequence of the genes for Oat1 and Oat3 having adjacent chromosomal locations. Plasma creatinine concentrations of Oat3-/- were elevated in clearance studies under anesthesia but not following brief isoflurane anesthesia, indicating that the former condition enhanced the quantitative contribution of OAT3 for renal creatinine secretion. The results are consistent with a contribution of OAT3 and possibly OAT1 to renal creatinine secretion in mice.  相似文献   

11.
Organic anion transporter 3 (OAT3) plays a vital role in removing a broad array of anionic drugs from kidney, thereby avoiding their possibly toxic side effects in the body. We earlier demonstrated that OAT3 is subjected to a specific type of post-translational modification called SUMOylation. SUMOylation is a dynamic event, where de-SUMOylation is catalyzed by a class of SUMO-specific proteases. In the present investigation, we assessed the role of SUMO-specific protease Senp2 in OAT3 SUMOylation, expression and function. We report here that overexpression of Senp2 in COS-7 cells led to a reduced OAT3 SUMOylation, which correlated well with a decreased OAT3 expression and transport activity. Such phenomenon was not observed in cells overexpressing an inactive mutant of Senp2. Furthermore, transfection of cells with Senp2-specific siRNA to knockdown the endogenous Senp2 resulted in an increased OAT3 SUMOylation, which correlated well with an enhanced OAT3 expression and transport activity. Coimmunoprecipitation experiments showed that Senp2 directly interacted with OAT3 in the kidneys of rats. Together these results provided first demonstration that Senp2 is a significant regulator for OAT3-mediated organic anion/drug transport.  相似文献   

12.
Regulation of bilirubin glucuronide transporters during hyperbilirubinemia in hepatic and extrahepatic tissues is not completely clear. In the present study, we evaluated the regulation of the bilirubin glucuronide transporters, multidrug resistance-associated proteins (MRP)2 and 3, in rats with obstructive jaundice. Bile duct ligation (BDL) or sham operation was performed in Wistar rats. Liver and kidneys were removed 1, 3, and 5 days after BDL (n = 4, in each group). Serum and urine were collected to measure bilirubin levels just before animal killing. MRP2 And MRP3 mRNA expressions were determined by real-time RT-PCR. Protein expression of MRP2 and MRP3 was determined by Western blotting. Renal MRP2 function was evaluated by para-aminohippurate (PAH) clearance. The effect of conjugated bilirubin, unconjugated bilirubin, human bile, and sulfate-conjugated bile acid on MRP2 gene expression was also evaluated in renal and hepatocyte cell lines. Serum bilirubin and urinary bilirubin excretion increased significantly after BDL. In the liver, the mRNA expression of MRP2 decreased 59, 86, and 82%, and its protein expression decreased 25, 74, and 93% compared with sham-operated animals after 24, 72, and 120 h of BDL, respectively. In contrast, the liver expression of MRP3 mRNA increased 138, 2,137, and 3,295%, and its protein expression increased 560, 634, and 612% compared with sham-operated animals after 24, 72, and 120 h of BDL, respectively. On the other hand, in the kidneys, the mRNA expression of MRP2 increased 162, 73, and 21%, and its protein expression increased 387, 558, and 472% compared with sham-operated animals after 24, 72, and 120 h of BDL, respectively. PAH clearance was significantly increased after BDL. The mRNA expression of MRP2 increased in renal proximal tubular epithelial cells after treatment with conjugated bilirubin, sulfate-conjugated bile acid or human bile. Upregulation of MRP2 in the kidneys and MRP3 in the liver may be a compensatory mechanism to improve bilirubin clearance during obstructive jaundice.  相似文献   

13.
A novel transport protein with the properties of voltage-driven organic anion transport was isolated from pig kidney cortex by expression cloning in Xenopus laevis oocytes. A cDNA library was constructed from size-fractionated poly(A)+ RNA and screened for p-aminohippurate (PAH) transport in high potassium medium. A 1856-base pair cDNA encoding a 467-amino acid peptide designated as OATV1 (voltage-driven organic anion transporter 1) was isolated. The predicted amino acid sequence of OATV1 exhibited 60-65% identity to those of human, rat, rabbit, and mouse sodium-dependent phosphate cotransporter type 1 (NPT1), although OATV1 did not transport phosphate. The homology of this transporter to known members of the organic anion transporter family (OAT family) was about 25-30%. OATV1-mediated PAH transport was affected by the changes in membrane potential. The transport was Na+-independent and enhanced at high concentrations of extracellular potassium and low concentrations of extracellular chloride. Under the voltage clamp condition, extracellularly applied PAH induced outward currents in oocytes expressing OATV1. The current showed steep voltage dependence, consistent with the voltage-driven transport of PAH by OATV1. The PAH transport was inhibited by various organic anions but not by organic cations, indicating the multispecific nature of OATV1 for anionic compounds. This transport protein is localized at the apical membrane of renal proximal tubule, consistent with the proposed localization of a voltage-driven organic anion transporter. Therefore, it is proposed that OATV1 plays an important role to excrete drugs, xenobiotics, and their metabolites driven by membrane voltage through the apical membrane of the tubular epithelial cells into the urine.  相似文献   

14.
Uric acid (urate) is the end product of purine metabolism in humans. Human kidneys reabsorb a large proportion of filtered urate. This extensive renal reabsorption, together with the fact that humans do not possess uricase that catalyzes the biotransformation of urate into allantoin, results in a higher plasma urate concentration in humans compared to other mammals. A major determinant of plasma urate concentration is renal excretion as a function of the balance between reabsorption and secretion. We previously identified that renal urate absorption in proximal tubular epithelial cells occurs mainly via apical urate/anion exchanger, URAT1/SLC22A12, and by facilitated diffusion along the trans-membrane potential gradient by the basolateral voltage-driven urate efflux transporter, URATv1/SLC2A9/GLUT9. In contrast, the molecular mechanism by which renal urate secretion occurs remains elusive. Recently, we reported a newly characterized human voltage-driven drug efflux transporter, hNPT4/SLC17A3, which functions as a urate exit pathway located at the apical side of renal proximal tubules. This transporter protein has been hypothesized to play an important role with regard to net urate efflux. An in vivo role of hNPT4 is supported by the fact that missense mutations in SLC17A3 present in hyperuricemia patients with urate underexcretion abolished urate efflux capacity in vitro. Herein, we report data demonstrating that loop diuretics and thiazide diuretics substantially interact with hNPT4. These data provide molecular evidence for loop and thiazide-diuretics-induced hyperuricemia. Thus, we propose that hNPT4 is an important transepithelial proximal tubular transporter that transports diuretic drugs and operates functionally with basolateral organic anion transporters 1/3 (OAT1/OAT3).  相似文献   

15.
Sodium-dependent dicarboxylate transporters located in the basolateral membrane (NaDC-3) of renal proximal tubule cells maintain the driving force for exchange of organic anions and drugs against alpha-ketoglutarate via organic anion transporters OAT1 and OAT3. So far, information on direct interaction of drugs with the cloned NaDC-3 was missing. Here we tested the interaction of non-steroidal anti-inflammatory drugs (NSAIDs) and benzylpenicillin with NaDC-3 cloned from winter flounder (fNaDC-3) and human (hNaDC-3) kidneys. Flufenamate and benzylpenicillin inhibited [14C]succinate uptake in oocytes expressing fNaDC-3. Flufenamate elicited Na(+)-dependent currents in oocytes expressing fNaDC-3 with a reversal potential around -60 mV. Raising extracellular K+ concentration depolarized fNaDC3-expressing oocytes more in the presence of flufenamate than in its absence, an effect not seen with water-injected control oocytes. These findings suggest that flufenamate via interaction with fNaDC-3 increased the K+ conductance. Acetylsalicylate, indomethacin, and salicylate showed small potential-dependent inward currents in fNaDC-3 but not in hNaDC-3 expressing oocytes. Benzylpenicillin induced voltage-dependent inward currents which were Na(+)-dependent in oocytes expressing fNaDC-3. The currents were, however, much smaller than those induced by succinate, reflecting probably a low fit of the monovalent benzylpenicillin to the dicarboxylate binding site. The data show hitherto unknown effects of monovalent anionic drugs on a transporter for divalent di- and tricarboxylates.  相似文献   

16.
We found previously that expression of multidrug resistance-associated protein (MRP) 3 is induced in a mutant rat strain (Eisai hyperbilirubinemic rats) whose canalicular multispecific organic anion transporter (cMOAT/MRP2) function is hereditarily defective and in normal Sprague-Dawley (SD) rats after ligation of the common bile duct. In the present study, the inducible nature of MRP3 was examined, using Northern and Western blot analyses, in comparison with that of other secondary active [Na(+)-taurocholic acid cotransporting polypeptide (Ntcp), organic anion transporting polypeptide 1 (oatp1), and organic cation transporter (OCT1)] and primary active [P-glycoprotein (P-gp), cMOAT/MRP2, and MRP6] transporters. alpha-Naphthylisothiocyanate treatment and common bile duct ligation induced expression of P-gp and MRP3, whereas expression of Ntcp, oatp1, and OCT1 was reduced by the same treatment. Although expression of MRP3 was also induced by administration of phenobarbital, that of cMOAT/MRP2, MRP1, and MRP6 was not affected by any of these treatments. Moreover, the mRNA level of MRP3, but not that of P-gp, was increased in SD rats after administration of bilirubin and in Gunn rats whose hepatic bilirubin concentration is elevated because of a defect in the expression of UDP-glucuronosyl transferase. However, the MRP3 protein level was not affected by bilirubin administration. Although the increased MRP3 mRNA level was associated with the increased concentration of bilirubin and/or its glucuronides in mutant rats and in SD rats that had undergone common bile duct ligation or alpha-naphthylisothiocyanate treatment, we must assume that factor(s) other than these physiological substances are also involved in the increased protein level of MRP3.  相似文献   

17.
Pharmacokinetic studies of the drugs administered to subjects with mechanical cholestasis are scarce. The purpose of the present study was to examine the effects of bile duct ligation of 3 days (peak of elevation of serum bile acids and bilirubin) on the systemic and renal PAH clearance and on the expression of cortical renal OAT1 and OAT3 in a rat model. PAH is the prototypical substrate of the renal organic anion transport system. Male Wistar rats underwent a bile duct ligation (BDL rats). Pair-fed sham-operated rats served as controls. BDL rats displayed a significantly lower systemic PAH clearance. Renal studies revealed a reduction in the renal clearance and in the excreted and secreted load of PAH in BDL rats. The OAT1 protein expression in kidney homogenates was not modified, but it decreased in the basolateral membranes from BDL rats. In contrast, OAT3 abundance in both kidney cortex homogenates and in basolateral membranes increased by 3 days after the ligation. Immunocytochemical studies (light microscopic and confocal immunofluorescence microscopic analyses) confirmed the changes in the renal expression of these transport proteins. The present study demonstrates the key role of OAT1 expression in the impaired elimination of PAH after 3 days of obstructive cholestasis.  相似文献   

18.
The evolutionary loss of hepatic urate oxidase (uricase) has resulted in humans with elevated serum uric acid (urate). Uricase loss may have been beneficial to early primate survival. However, an elevated serum urate has predisposed man to hyperuricemia, a metabolic disturbance leading to gout, hypertension, and various cardiovascular diseases. Human serum urate levels are largely determined by urate reabsorption and secretion in the kidney. Renal urate reabsorption is controlled via two proximal tubular urate transporters: apical URAT1 (SLC22A12) and basolateral URATv1/GLUT9 (SLC2A9). In contrast, the molecular mechanism(s) for renal urate secretion remain unknown. In this report, we demonstrate that an orphan transporter hNPT4 (human sodium phosphate transporter 4; SLC17A3) was a multispecific organic anion efflux transporter expressed in the kidneys and liver. hNPT4 was localized at the apical side of renal tubules and functioned as a voltage-driven urate transporter. Furthermore, loop diuretics, such as furosemide and bumetanide, substantially interacted with hNPT4. Thus, this protein is likely to act as a common secretion route for both drugs and may play an important role in diuretics-induced hyperuricemia. The in vivo role of hNPT4 was suggested by two hyperuricemia patients with missense mutations in SLC17A3. These mutated versions of hNPT4 exhibited reduced urate efflux when they were expressed in Xenopus oocytes. Our findings will complete a model of urate secretion in the renal tubular cell, where intracellular urate taken up via OAT1 and/or OAT3 from the blood exits from the cell into the lumen via hNPT4.  相似文献   

19.
Recently three proteins, playing central roles in the bidirectional transport of urate in renal proximal tubules, were identified: two members of the organic anion transporter (OAT) family, OAT1 and OAT3, and a protein that designated renal urate-anion exchanger (URAT1). Antibodies against these transporters are very important for investigating their expressions and functions. With the cytokine gene as a molecular adjuvant, genetic immunization-based antibody production offers several advantages including high specificity and high recognition to the native protein compared with current methods. We fused high antigenicity fragments of the three transporters to the plasmids pBQAP-TT containing T-cell epitopes and flanking regions from tetanus toxin, respectively. Gene gun immunization with these recombinant plasmids and two other adjuvant plasmids, which express granulocyte/ macrophage colony-stimulating factor and FMS-like tyrosine kinase 3 ligand, induced high level immunoglobulin G antibodies, respectively. The native corresponding proteins of URAT1, OAT1 and OAT3, in human kidney can be recognized by their specific antibodies, respectively, with Western blot analysis and immunohistochemistry. Besides, URAT1 expression in Xenopus oocytes can also be recognized by its corresponding antibody with immuno-fluorescence. The successful production of the antibodies has provided an important tool for the study of UA transporters.  相似文献   

20.
Organic anions are secreted into urine via organic anion transporters across the renal basolateral and apical membranes. However, no apical membrane transporter for organic anions such as p-aminohippuric acid (PAH) has yet been identified. In the present study, we showed that human NPT1, which is present in renal apical membrane, mediates the transport of PAH. The K(m) value for PAH uptake was 2.66 mM and the uptake was chloride ion sensitive. These results are compatible with those reported for the classical organic anion transport system at the renal apical membrane. PAH transport was inhibited by various anionic compounds. Human NPT1 also accepted uric acid, benzylpenicillin, faropenem, and estradiol-17beta-glucuronide as substrates. Considering its chloride ion sensitivity, Npt1 is expected to function for secretion of PAH from renal proximal tubular cells. This is the first molecular demonstration of an organic anion transport function for PAH at the renal apical membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号