首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of human protein HSPC034 has been determined by both solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography. Refinement of the NMR structure ensemble, using a Rosetta protocol in the absence of NMR restraints, resulted in significant improvements not only in structure quality, but also in molecular replacement (MR) performance with the raw X-ray diffraction data using MOLREP and Phaser. This method has recently been shown to be generally applicable with improved MR performance demonstrated for eight NMR structures refined using Rosetta (Qian et al., Nature 2007;450:259-264). Additionally, NMR structures of HSPC034 calculated by standard methods that include NMR restraints have improvements in the RMSD to the crystal structure and MR performance in the order DYANA, CYANA, XPLOR-NIH, and CNS with explicit water refinement (CNSw). Further Rosetta refinement of the CNSw structures, perhaps due to more thorough conformational sampling and/or a superior force field, was capable of finding alternative low energy protein conformations that were equally consistent with the NMR data according to the Recall, Precision, and F-measure (RPF) scores. On further examination, the additional MR-performance shortfall for NMR refined structures as compared with the X-ray structure were attributed, in part, to crystal-packing effects, real structural differences, and inferior hydrogen bonding in the NMR structures. A good correlation between a decrease in the number of buried unsatisfied hydrogen-bond donors and improved MR performance demonstrates the importance of hydrogen-bond terms in the force field for improving NMR structures. The superior hydrogen-bond network in Rosetta-refined structures demonstrates that correct identification of hydrogen bonds should be a critical goal of NMR structure refinement. Inclusion of nonbivalent hydrogen bonds identified from Rosetta structures as additional restraints in the structure calculation results in NMR structures with improved MR performance.  相似文献   

2.
P Pietsch 《Cytobios》1978,23(91-92):187-198
Molecular model building studies were conducted to simulate phleomycin-bleomycin (PB) antibiotics and thus assess a hypothetical polyphleomycin-DNA complex proposed earlier. While the latter model was not conclusively proved it was found to be quite consistent with the structure of PB compounds.  相似文献   

3.
4.
TE33 is an Fab fragment of a monoclonal antibody raised against a 15-residue long peptide (CTP3), corresponding in sequence to residues 50-64 of the cholera toxin B subunit. Crystals of the complex between TE33 and CTP3 have been grown from 20% (w/v) polyethylene glycol-8000 at pH 4.0. The crystals are orthorhombic, space group P2(1)2(1)2, with unit cell dimensions a = 104.15, b = 110.61, and c = 40.68 A. X-Ray data have been collected to a resolution of 2.3 A. The asymmetric unit contains one molecule of Fab and one molecule of CTP3. The presence of CTP3 has been demonstrated by fluorescence quenching of the dissolved crystal after X-ray data collection. A molecular replacement solution was found based on the coordinates of DB3, an antiprogesterone Fab fragment.  相似文献   

5.
The application of molecular replacement (MR) in macromolecular crystallography can be limited by the "model bias" problem. Here we propose a strategy to reduce model bias when only part of a new structure is known: after the MR search, structure determination of the unknown part of the new structure can be facilitated by cross-crystal averaging of the known part of the new structure with the search model. This strategy dramatically improves electron density in the unknown part of the new structure. It has enabled us to determine the structures of two coronavirus receptor-binding domains each complexed with their receptor at moderate resolutions. In a test case, it also enabled automated model building when >50% of an antigen-antibody complex was absent. These results suggest that this averaging strategy can be routinely used after MR to enhance the interpretability of electron density associated with missing model.  相似文献   

6.
7.
8.
Fujitsuka Y  Chikenji G  Takada S 《Proteins》2006,62(2):381-398
Predicting protein tertiary structures by in silico folding is still very difficult for proteins that have new folds. Here, we developed a coarse-grained energy function, SimFold, for de novo structure prediction, performed a benchmark test of prediction with fragment assembly simulations for 38 test proteins, and proposed consensus prediction with Rosetta. The SimFold energy consists of many terms that take into account solvent-induced effects on the basis of physicochemical consideration. In the benchmark test, SimFold succeeded in predicting native structures within 6.5 A for 12 of 38 proteins; this success rate was the same as that by the publicly available version of Rosetta (ab initio version 1.2) run with default parameters. We investigated which energy terms in SimFold contribute to structure prediction performance, finding that the hydrophobic interaction is the most crucial for the prediction, whereas other sequence-specific terms have weak but positive roles. In the benchmark, well-predicted proteins by SimFold and by Rosetta were not the same for 5 of 12 proteins, which led us to introduce consensus prediction. With combined decoys, we succeeded in prediction for 16 proteins, four more than SimFold or Rosetta separately. For each of 38 proteins, structural ensembles generated by SimFold and by Rosetta were qualitatively compared by mapping sampled structural space onto two dimensions. For proteins of which one of the two methods succeeded and the other failed in prediction, the former had a less scattered ensemble located around the native. For proteins of which both methods succeeded in prediction, often two ensembles were mixed up.  相似文献   

9.
Although we have a rather elaborate "working-cycle" for the 60 kDa molecular chaperones, which possess a cavity, and are called Anfinsen-cage-type chaperones to emphasize that they provide a closed, protected environment to help the folding of their substrates, our understanding of the molecular mechanism of how these chaperones help protein folding is still incomplete. The present study adds two novel elements to the mechanism of how Anfinsen-cage-type chaperones (members of the 60 kDa chaperone family) aid protein folding. It is proposed that (1) these chaperones do not generally unfold their targets, but by a multidirectional expansion preferentially loosen the tight, inner structure of the collapsed target protein; and (2) during the expansion water molecules enter the hydrophobic core of the target, this percolation being a key step in chaperone action. This study compares this chaperone-percolator model with existing explanations and suggests further experiments to test it. BioEssays 1999;21:959-965.  相似文献   

10.
A molecular model has been derived for the intercalation of proflavine into the CpG site of the decamer duplex of d(GATACGATAC). The starting geometry of the intercalation site was taken from previous crystallographic studies on the d(CpG)-proflavine complex, and molecular mechanics used to obtain a stereochemically acceptable structure. This has widened grooves compared to standard A- or B- double helices, as well as distinct conformational, roll, twist and tilt features.  相似文献   

11.
We have developed a novel and robust approach for automatic and unsupervised simultaneous nuclear Overhauser effect (NOE) assignment and structure determination within the CS-Rosetta framework. Starting from unassigned peak lists and chemical shift assignments, autoNOE-Rosetta determines NOE cross-peak assignments and generates structural models. The approach tolerates incomplete and raw NOE peak lists as well as incomplete or partially incorrect chemical shift assignments, and its performance has been tested on 50 protein targets ranging from 50 to 200 residues in size. We find a significantly improved performance compared to established programs, particularly for larger proteins and for NOE data obtained on perdeuterated protein samples. X-ray crystallographic structures allowed comparison of Rosetta and conventional, PDB-deposited, NMR models in 20 of 50 test cases. The unsupervised autoNOE-Rosetta models were often of significantly higher accuracy than the corresponding expert-supervised NMR models deposited in the PDB. We also tested the method with unrefined peak lists and found that performance was nearly as good as for refined peak lists. Finally, demonstrating our method’s remarkable robustness against problematic input data, we provided correct models for an incorrect PDB-deposited NMR solution structure.  相似文献   

12.
Mouse alpha-macroglobulin (M-AMG) is believed to be a functional homologue of human alpha 2-macroglobulin (h-alpha 2M). The subunit composition, the tryptic cleavage pattern before and after methylamine incorporation and the two-dimensional tryptic-peptide mapping, however, indicate that these two proteins are structurally distinct. M-AMG is composed of two major types of polypeptides (Mr 163,000 and 35,000) together with a minor polypeptide (Mr 185,000), whereas h-alpha 2M has only one type of polypeptide (Mr 185,000). After incorporation of methylamine, there is no change in the normal tryptic-cleavage pattern of M-AMG; however, tryptic cleavage of h-alpha 2M is severely retarded [Hudson & Koo (1982) Biochim. Biophys. Acta 704, 290-303]. The N-terminal sequence of the 163,000-Mr polypeptide of M-AMG shows sequence homology with the N-terminal sequence of h-alpha 2M. The amino acid compositions of M-AMG and its two major polypeptide chains are compared. Thermal fragmentation studies show that the 163,000-Mr polypeptide is broken down into 125,000-Mr and 29,000-Mr fragments. Trypsin-binding studies show that M-AMG can bind two molecules of trypsin/molecule. Inactivations of the trypsin-binding property of M-AMG and h-alpha 2M with methylamine show similar kinetics of inhibition at 4 degrees C. A structural model of M-AMG is proposed, based on accumulated data.  相似文献   

13.
The United States is somewhat unique among major fishing nations in mandating the rebuilding of overfished stocks within a specified period of time, a requirement first enacted in 1996. This study is based primarily on a review of trends in the 2000–2010 period in fishing mortality and biomass levels of stocks in rebuilding programs, supplemented by recent U.S. and international scientific literature. The major objectives of this study are, first, to assess progress achieved to date in these rebuilding plans, and, second, to identify the most significant obstacles to successful rebuilding. Sufficient data exists to monitor trends in fishing mortality and biomass levels number for just 35 stocks, out of a total 59 stocks that are currently rebuilding or have recently completed the rebuilding process. Most stocks in rebuilding plans are finfish, and the majority of are managed in relatively few fishery management plans governing fisheries in the Atlantic, Gulf of Mexico and northwest Pacific portions of the U.S. 200-mile exclusive economic zone. Therefore, the findings of this report are tentative and do not necessarily reflect broader trends in U.S. federally managed fisheries. This report shows substantial progress in about two-thirds of the 35 rebuilding stocks included in this report. Progress is defined in two ways: either the rebuilding plan has reduced fishing mortality to an acceptably low level, or it has brought about stock recovery to a mandated target. Most significantly, the assessment of rebuilding plan case studies indicates that reductions in fishing mortality, especially when implemented early in the programs and maintained as long as necessary, lead to significant increases in stock abundance in roughly four of five stocks. At the same time, the case studies also show that, in about one-third of the rebuilding plans, recovery measures have not yet produced the desired outcomes. The two most common problems are failure to adequately control fishing mortality and low resilience (high susceptibility to fishing pressure) of certain categories of overfished stocks.  相似文献   

14.
The relationship of structure to function in the recognition of ribonuclease S-peptide by S-protein was studied by several methods. Liquid phase peptide synthesis was employed to generate analogs of S-peptide in which from 1 to 8 residues were deleted from the NH2-terminal end of the S-peptide. Additional derivatives were made by substitutions in the NH2-terminal three amino acids or by modifying the S-peptide analogs by trifluoroacetylation. The analogs were generated in the following way. S-Peptide was cleaved with chymotrypsin. The fragment obtained, RNase(9-20), was purified and lengthened step by step using liquid phase peptide synthesis. A second set of analogs were prepared by cleavage of CF3CO-S-peptide with elastase and the resulting CF3CO-RNase(7-20), similarly lengthened. The various analogs of S-peptide were tested in their capacity to combine with S-protein and regenerate biological activity as measured by Vmax and Kb. This work shows a positive contribution of every one of the first 8 NH2-terminal residues of S-peptide to the molecular recognition of S-protein in the presence of RNA substrate. Substitution of the first 3 residues by alanine or blocking of the free amino groups decreases recognition, indicating that the original primary structure is the most favorable one.  相似文献   

15.
Several articles in the recent literature discuss the complexities of the impact of vaccination on competing subtypes of one micro-organism. Both with competing virus strains and competing serotypes of bacteria, it has been established that vaccination has the potential to switch the competitive advantage from one of the pathogen subtypes to the other resulting in pathogen replacement. The main mechanism behind this process of substitution is thought to be the differential effectiveness of the vaccine with respect to the two competing micro-organisms. In this article, we show that, if the disease dynamics is regulated by super-infection, strain substitution may indeed occur even with perfect vaccination. In fact we discuss a two-strain epidemic model in which the first strain can infect individuals already infected by the second and, as far as vaccination is concerned, we consider a best-case scenario in which the vaccine provides perfect protection against both strains. We find out that if the reproduction number of the first strain is smaller than the reproduction number of the second strain and the first strain dominates in the absence of vaccination then increasing vaccination levels promotes coexistence which allows the first strain to persist in the population even if its vaccine-dependent reproduction number is below one. Further increase of vaccination levels induces the domination of the second strain in the population. Thus the second strain replaces the first strain. Large enough vaccination levels lead to the eradication of the disease.  相似文献   

16.
Food and nutrition are fundamental to military capability. Historical examples demonstrate that a failure to supply adequate nutrition to armies inevitably leads to disaster; however, innovative measures to overcome difficulties in feeding reap benefits, and save lives. In barracks, UK Armed Forces are currently fed according to the relatively new Pay As You Dine policy, which has attracted criticism from some quarters. The recently introduced Multi-Climate Ration has been developed specifically to deal with issues arising from Iraq and the current conflict in Afghanistan. Severely wounded military personnel are likely to lose a significant amount of their muscle mass, in spite of the best medical care. Nutritional support is unable to prevent this, but can ameliorate the effects of the catabolic process. Measuring and quantifying nutritional status during critical illness is difficult. A consensus is beginning to emerge from studies investigating the effects of nutritional interventions on how, what and when to feed patients with critical illness. The Ministry of Defence is currently undertaking research to address specific concerns related to nutrition as well as seeking to promote healthy eating in military personnel.  相似文献   

17.
Thick-walled rosette-like snow algae were long thought to be a life stage of various other species of snow algae. Rosette-like cells have not been cultured, but by manually isolating cells from 38 field samples in southern British Columbia, we assigned a variety of rosette morphologies to DNA sequence. Phylogenetic analysis of Rubisco large-subunit (rbcL) gene, ribosomal internal transcribed spacer 2 (ITS2) rRNA region, and 18S rRNA gene revealed that the rosette-like cells form a new clade within the phylogroup Chloromonadinia. Based on these data, we designate a new genus, Rosetta, which comprises five novel species: R. castellata, R. floranivea, R. stellaria, R. rubriterra, and R. papavera. In a survey of 762 snow samples from British Columbia, we observed R. floranivea exclusively on snow overlying high-elevation glaciers, whereas R. castellata was observed at lower elevations, near the tree line. The other three species were rarely observed. Spherical red cells enveloped in a thin translucent sac were conspecific with Rosetta, possibly a developmental stage. These results highlight the unexplored diversity among snow algae and emphasize the utility of single-cell isolation to advance the centuries-old problem of disentangling life stages and cryptic species.  相似文献   

18.
A Voegler Smith  C K Hall 《Proteins》2001,44(3):344-360
An intermediate-resolution model of small, homogeneous peptides is introduced, and discontinuous molecular dynamics simulation is applied to study secondary structure formation. Physically, each model residue consists of a detailed three-bead backbone and a simplified single-bead side-chain. Excluded volume and hydrogen bond interactions are constructed with discontinuous (i.e., hard-sphere and square-well) potentials. Simulation results show that the backbone motion of the model is limited to realistic regions of Phi-Psi conformational space. Model polyalanine chains undergo a locally cooperative transition to form alpha-helices that are stabilized by backbone hydrogen bonding, while model polyglycine chains tend to adopt nonhelical structures. When side-chain size is increased beyond a critical diameter, steric interactions prevent formation of long alpha-helices. These trends in helicity as a function of residue type have been well documented by experimental, theoretical, and simulation studies and demonstrate the ability of the intermediate-resolution model developed in this work to accurately mimic realistic peptide behavior. The efficient algorithm used permits observation of the complete helix-coil transition within 15 min on a single-processor workstation, suggesting that simulations of very long times are possible with this model.  相似文献   

19.
By fluorimetric titration of Rifs (E. coli B) and Rifr (E. coli rpoB255) RNA polymerases with rifamycin, the mutant polymerase was demonstrated to bind rifamycin. A comparison of spatial structures of rifamycin and dinucleotide fragment of RNA in the hybrid with DNA revealed their similarity. Taking into account this structural similarity and also the fact that two phosphodiester bonds can be formed by RNA polymerase in the presence of rifamycin, a model for the inhibition mode was proposed. According to this model, rifamycin occupies the place of two terminal nucleotides of synthesized, but not translocated pentanucleotide in the transcribing complex. Asp-516 of the wild type beta-subunit was assumed to form a hydrogen bond with the rifamycin C(23) hydroxyl group. On the base of this model, reduced "cycling" synthesis of tetra-, penta-... up to decanucleotides by the Rifr RNA polymerase, in comparison with Rifs, was predicted.  相似文献   

20.
A stochastic evolutionary model of molecular sequences is proposed. The basic forces in evolution are supposed to be mutation and selection. The concept is somewhat similar to Kauffman-Levin's concept of adaptive walks and corresponding analytical expressions have been developed. The selective force is divided into two parts: a slowly-varying part and a rapidly-changing fluctuation. The latter influences the distribution of sequences and results in an equation of motion along the flow line. The former plays a more important role in the emergence of evolutionary order. It is demonstrated that the asymmetry of selective forces would lead to a definite order of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号