首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of cell wall teichoic acids was studied by chemical methods and NMR spectroscopy in the type strains of two actinomycete species of the "Streptomyces griseoviridis" phenetic cluster: Streptomyces daghestanicus and Streptomyces murinus. S. daghestanicus VKM Ac-1722T contained two polymers having a 1,5-poly(ribitol phosphate) structure. In one of them, the ribitol units had alpha-rhamnopyranose and 3-O-methyl-alpha-rhamnopyranose substituents; in the other, each ribitol unit was carrying 2,4-ketal-bound pyruvic acid. Such polymers were earlier found in the cell walls of Streptomyces roseolus and Nocardiopsis albus, respectively; however, their simultaneous presence in the cell wall has never been reported. The cell wall teichoic acid of Streptomyces murinus INA-00524T was is a 1,5-poly(glucosylpolyol phosphate), whose repeating unit was [-6)-beta-D-glucopyranosyl-(1 --> 2)-glycerol phosphate-(3-P-]. Such a teichoic acid was earlier found in Spirilliplanes yamanashiensis. The 13C NMR spectrum of this polymer is presented for the first time. The results of the present investigation, together with earlier published data, show that the type strains of four species of the "Streptomyces griseoviridis" phenetic cluster differ in the composition and structure of their teichoic acids; thus, teichoic acids may serve as chemotaxonomic markers of the species.  相似文献   

2.
The composition of cell walls was comparatively studied in Streptomyces roseoflavus var. roseofungini 1128 and in its variant 1-68. In the logarithmic phase of growth, the content of teichoic acid in the cell wall of the parent culture was four times as high as in the cell wall of the variant. The cell walls of the parent culture contained 5 to 7 times more O-lysyl residues not only due to a higher content of teichoic acid in the walls but also owing to a lower content of lysyl groups in the teichoic acid of the variant. An additional polysaccharide comprising galactose and glucosamine was found in the cell wall of the variant but not in the parent strain. The peptidoglycan of the both cultures had a structure typical of Streptomyces spp.; its content in the cell walls of the two cultures was identical (ca. 50% of the dry cell wall biomass weight). The results are discussed in connection with the peculiarities of the variant hyphal septation.  相似文献   

3.
The cell wall of Streptomyces sp. MB-8 contains a major teichoic acid, viz., 1,3-poly(glycerol phosphate) substituted with N-acetyl-alpha-D-glucosamine (the degree of substitution is 60%), a minor teichoic acid, viz., non-substituted poly(glycerol phosphate), and a family of Kdn (3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid)-containing oligomers of the following general structure: [carbohydrate structure: see text]. The composition of the oligomers was established using MALDI-TOF mass spectroscopy. The present study provides the second example of the identification of Kdn as a component of cell wall polymers of streptomycetes, which are the causative agents of potato scab.  相似文献   

4.
Summary During the Schmidt-Thannhauser fractionation procedure at nucleic acid determinations of Streptomyces griseus, a phosphorous-containing compound(s) was found which could not be taken as nucleic acid or polyphosphate. The hydrolisate of the isolated substance proved to have almost the same composition as teichoic acid from Staphylococcus aureus Duncan.Teichoic acid was found both intracellular and in the isolated cell wall of Streptomyces griseus mycelia.In the cell wall only the ribitol type of teichoic acids could be detected but not the glycerol type.  相似文献   

5.
Aims:  To reinvestigate the production of lipoteichoic acid (LTA) by the actinomycete strain Streptomyces sp. DSM 40537 (=ATCC 3351).
Methods and Results:  LTA was extracted and purified from strain Streptomyces sp. DSM 40537. The identification of the LTA was confirmed by Western blotting with a monoclonal antibody. During these studies, two stable phenotypic variants of DSM 40537 were obtained, one of which released a distinctive orange pigment. 16S rRNA gene sequencing of each variant yielded identical sequences and allowed phylogenetic analysis to be performed.
Conclusions:  Streptomyces sp. DSM 40537 was shown to exhibit stable morphological variation. The strain was confirmed to be a LTA-producing actinomycete and to belong to the Streptomyces albidoflavus cluster within the genus Streptomyces .
Significance and Impact of the Study:  These data provide important support for the hypothesis that the distribution of LTA is linked to that of wall teichoic acids and emphasizes the need to reinvestigate LTA distribution in actinomycetes.  相似文献   

6.
A new teichoic acid was identified in the cell walls of Streptomyces griseoviridis VKM Ac-622T, Streptomyces sp. VKM Ac-2091, and Actinoplanes campanulata VKM Ac-1319T. The polymer is poly(glycosylglycerol phosphate). The repeating units of the polymer, alpha-galactopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-galactopyran+ ++ osyl-(1-->1)-glycerols, are in phosphodiester linkage at C-3 of glycerol and C-6 of galactose. The structures of cell wall teichoic acids in the strains Streptomyces chryseus VKM Ac-200T and "Streptomyces subflavus" VKM Ac-484 similar in morphology and growth characteristics are also identical: 1,5-poly(ribitol phosphate) substituted at C-4(2) by 2-acetamido-2-deoxy-beta-glucopyranosyl residues and 1,3-poly(glycerol phosphate). The taxonomic aspects of these results are discussed.  相似文献   

7.
The major cell wall polymer of Streptomyces sp. VKM Ac-2125, the causative agent of potato scab, is galactomannan with the repeating unit of the following structure: [carbohydrate structure in text] The polysaccharide with such a structure is found in the bacterial cell wall for the first time. The cell wall also contains small amount of a teichoic acid of the poly(glycerol phosphate) type and 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid.  相似文献   

8.
γ-Butyrolactones in Streptomyces are well recognized as bacterial hormones, and they affect secondary metabolism of Streptomyces. γ-Butyrolactone receptors are considered important regulatory proteins, and various γ-butyrolactone synthases and receptors have been reported in Streptomyces. Here, we characterized a new regulator, SCO0608, that interacted with SCB1 (γ-butyrolactone of Streptomyces coelicolor) and bound to the scbR/A and adpA promoters. The SCO0608 protein sequences are not similar to those of any known γ-butyrolactone binding proteins in Streptomyces such as ScbR from S. coelicolor or ArpA from Streptomyces griseus. Interestingly, SCO0608 functions as a repressor of antibiotic biosynthesis and spore formation in R5 complex media. We showed the existence of another type of γ-butyrolactone receptor in Streptomyces, and this SCO0608 was named ScbR-like γ-butyrolactone binding regulator (SlbR) in S. coelicolor.  相似文献   

9.
Through microarray analysis of an antibiotic-downregulator-deleted Streptomyces coelicolor ΔwblA ΔSCO1712 mutant, 28 wblA- and SCO1712-dependent genes were identified and characterized. Among 14 wblA- and SCO1712-independent genes, a carbon flux regulating 6-phosphofructokinase SCO5426 was additionally disrupted in the ΔwblA ΔSCO1712 mutant and further stimulated actinorhodin production in S. coelicolor, implying that both regulatory and precursor flux pathways could be synergistically optimized for antibiotic production.  相似文献   

10.
11.
The cell walls and peptidoglycans of two mutant strains, Streptomyces chrysomallus var. carotenoides and Streptomyces chrysomallus var. macrotetrolidi, were studied. The strains are organisms producing carotenes and antibiotics of the macrotetrolide group. By the qualitative composition of the peptidoglycans the mutants belong to Streptomyces and are similar. Their glycan portion consists of equimolar quantities of N-acetyl glucosamine and muramic acid. The peptide subunit is presented by glutamic acid, L, L-diaminopimelic acid, glycine and alanine. The molar ratio of alanine is 1.2-1.3. The mutant strains differ in the content of carbohydrates, total phosphorus and phosphorus belonging to teichoic acids. Teichoic acids of the cell walls of the both strains are of the ribitolhosphate nature. The cell walls of the mutants contain polysaccharides differing from teichoic acids and consisting of glucose, galactose, arabinose and fucose. The influence of the cell wall composition of the mutant strains on their morphology and metabolism and comparison of the data relative to the mutant strains with those relative to the starting strain are discussed.  相似文献   

12.
S-Adenosylmethionine (SAM) was previously documented to activate secondary metabolism in a variety of Streptomyces spp. and to promote actinorhodin (ACT) and undecylprodigiosin (RED) in Streptomyces coelicolor. The SAM-induced proteins in S. coelicolor include several ABC transporter components (SCO5260 and SCO5477) including BldKB, the component of a well-known regulatory factor for differentiations. In order to assess the role of these ABC transporter complexes in differentiation of Streptomyces, SCO5260 and SCO5476, the first genes from the cognate complex clusters, were individually inactivated by gene replacement. Inactivation of either SCO5260 or SCO5476 led to impaired sporulation on agar medium, with the more drastic defect in the SCO5260 null mutant (ASCO5260). ASCO5260 displayed growth retardation and reduced yields of ACT and RED in liquid cultures. In addition, SAM supplementation failed in promoting the production of ACT and RED in ASCO5260. Inactivation of SCO5476 gave no significant change in growth and production of ACT and RED, but impaired the promoting effect of SAM on ACT production without interfering with the effect on RED production. The present study suggests that SAM induces several ABC transporters to modulate secondary metabolism and morphological development in S. coelicolor.  相似文献   

13.
14.
The biosynthetic enzymes involved in wall teichoic acid biogenesis in gram-positive bacteria have been the subject of renewed investigation in recent years with the benefit of modern tools of biochemistry and genetics. Nevertheless, there have been only limited investigations into the enzymes that glycosylate wall teichoic acid. Decades-old experiments in the model gram-positive bacterium, Bacillus subtilis 168, using phage-resistant mutants implicated tagE (also called gtaA and rodD) as the gene coding for the wall teichoic acid glycosyltransferase. This study and others have provided only indirect evidence to support a role for TagE in wall teichoic acid glycosylation. In this work, we showed that deletion of tagE resulted in the loss of α-glucose at the C-2 position of glycerol in the poly(glycerol phosphate) polymer backbone. We also reported the first kinetic characterization of pure, recombinant wall teichoic acid glycosyltransferase using clean synthetic substrates. We investigated the substrate specificity of TagE using a wide variety of acceptor substrates and found that the enzyme had a strong kinetic preference for the transfer of glucose from UDP-glucose to glycerol phosphate in polymeric form. Further, we showed that the enzyme recognized its polymeric (and repetitive) substrate with a sequential kinetic mechanism. This work provides direct evidence that TagE is the wall teichoic acid glycosyltransferase in B. subtilis 168 and provides a strong basis for further studies of the mechanism of wall teichoic acid glycosylation, a largely uncharted aspect of wall teichoic acid biogenesis.  相似文献   

15.
The cell wall anionic polymers of the 13 species of the "Streptomyces cyaneus" cluster have a similar structure and contain beta-glucosylated 1,5-poly(ribitol phosphate) and 1,3-poly(glycerol phosphate). In the degree of glucosylation of the ribitol phosphate units of their teichoic acids, the cluster members can be divided into two groups. The streptomycetes of the first group (S. afghaniensis, S. janthinus, S. purpurascens, S. roseoviolaceus, and S. violatus) are characterized by a very similar structure of their cell walls, completely glucosylated 1,5-poly(ribitol phosphate) chains, and a high degree of DNA homology (67-88%). The cell wall teichoic acids of the second group (S. azureus, S. bellus, S. caelestis, S. coeruleorubidus, S. curacoi, and S. violarus) differ in the degree of beta-glucosylation of their 1,5-poly(ribitol phosphate) chains and have a lower level of DNA homology (54-76%). Two streptomycetes of the cluster (S. cyaneus and S. hawaiiensis) are genetically distant from the other cluster members but have the same composition and structure of the cell wall teichoic acids as the second-group streptomycetes. The data obtained confirm the genetic relatedness of the "S. cyaneus" cluster members and suggest that the structure of the cell wall teichoic acids may serve as one of the taxonomic criteria of the species-level status of streptomycetes.  相似文献   

16.
Streptomyces coelicolor produces an extracellular protease inhibitor protein, STI (Streptomyces trypsin inhibitor). We show that post-growth elimination of STI is needed for colonies to develop aerial mycelium efficiently. Inactivation of STI, and thus the normal progression of colony development, at least partly involves an extracellular protease specified by gene SCO5913. Two-hybrid analysis identified two possible targets of STI inhibition (the products of SCO1355 and SCO5447), both extracellular proteases containing a domain homologous with the P-domain of eukaryotic convertases, proteases that mediate the processing of many precursors with important cellular or developmental roles. At least the SCO1355 protease is needed for the normal progression of development. Two components of the proposed cascade are dependent on the tRNA for the rare UUA (leucine) codon, which is specified by the developmental gene bldA. A model is presented that links intracellular regulatory events with an extracellular protease cascade to facilitate normal development.  相似文献   

17.
18.
Structures of the anionic polymers of streptomycetes Streptomyces fulvissimus VKM Ac-994(T), Streptomyces longispororuber VKM Ac-1735(T), Streptomyces aureoveticillatus VKM Ac-48(T) and Streptomyces spectabilis INA 00606 belonging to the phenetic cluster 'S. fulvissimus' were investigated by chemical and NMR spectroscopic methods. A teichoic acid from the cell wall of S. spectabilis INA 00606 was studied in more detail, and this was shown to represent 1,3-poly(glycerol phosphate) substituted with glucosamine (alpha-D-GlcNAc) and L-glutamic acid (non-stoichiometric substitution). For the first time, glutamic acid is identified as an acyl substituent in teichoic acids of streptomycetes. The polymer chain is built of the following fragments: Cell walls of other streptomycetes of the phenocluster under study contain 1,3-poly(glycerol phosphates) with glucosamine as a glycosyl substituent at O-2 of the glycerol phosphate units and L-glutamic acid and lysine as O-2 acyl substituents. Not all amino sugar residues in the polymers of these strains are N-acetylated, and the content of the glucosamine and lysine residues in the polymers of different strains is not the same. Despite certain quantitative differences in the structures of the polymers, one may consider streptomycetes of the phenocluster 'S. fulvissimus' as closely related microorganisms, the details of the structures serving as additional criteria for the determination of the species status of a strain under study.  相似文献   

19.
Streptomyces collinus Tü 365 (DSMZ 40733), isolated from Kouroussa (Guinea), is the producer of the elfamycin family antibiotic kirromycin, which inhibits bacterial protein biosynthesis by interfering with elongation factor EF-Tu. Here, we report on the Streptomyces collinus Tü 365 complete genome sequence of the 8.27 MB chromosome and the two plasmids SCO1 and SCO2.  相似文献   

20.
The cell wall of a pathogenic strain Streptomyces sp. VKM Ac-2275 isolated from potato tubers infected by scab contains a teichoic acid related to poly(glycosylpolyol phosphate) with a repeating unit established by chemical and NMR spectroscopic methods. About 60% of l-rhamnose residues bear an O-acetyl group at O-2 and 20% of the internal glucose residues contain an additional phosphate at C-4. The polymer is built of 5-6 units. This structure is found in bacteria for the first time. The strain is phylogenetically closest to the scab-causing species Streptomyces scabiei and Streptomyces europaeiscabiei, but differs from both these species in morphological and physiological characters and does not produce thaxtomin A, the main phytotoxin produced by S. scabiei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号