首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Increased tyrosine phosphorylation has been correlated with human cancer, including breast cancer. In general, the activation of tyrosine kinases (TKs) can be antagonized by the action of protein-tyrosine phosphatases (PTPs). However, in some cases PTPs can potentiate the activation of TKs. In this study, we have investigated the functional role of PTPε in human breast cancer cell lines. We found the up-regulation and activation of receptor PTPε (RPTPε) in MCF-7 cells and MDA-MB-231 upon PMA, FGF, and serum stimulation, which depended on EGFR and ERK1/2 activity. Diminishing the expression of PTPε in human breast cancer cells abolished ERK1/2 and AKT activation, and decreased the viability and anchorage-independent growth of the cells. Conversely, stable MCF-7 cell lines expressing inducible high levels of ectopic PTPε displayed higher activation of ERK1/2 and anchorage-independent growth. Our results demonstrate that expression of PTPε is up-regulated and activated in breast cancer cell lines, through EGFR, by sustained activation of the ERK1/2 pathway, generating a positive feedback regulatory loop required for survival of human breast cancer cells.  相似文献   

2.
3.
Neurotensin (NT) is a gastrointestinal neuropeptide that modulates intestinal inflammation and healing by binding to its high-affinity receptor NTR1. The dual role of NT in inflammation and healing is demonstrated in models of colitis induced by Clostridium difficile toxin A and dextran sulfate sodium, respectively, and involves NF-κB-dependent IL-8 expression and EGF receptor-mediated MAPK activation in human colonocytes. However, the detailed signaling pathways involved in these responses remain to be elucidated. We report here that NT/NTR1 coupling in human colonic epithelial NCM460 cells activates tyrosine phosphorylation of the insulin-like growth factor-1 receptor (IGF-1R) in a time- and dose-dependent manner. NT also rapidly induces Src tyrosine phosphorylation, whereas pretreatment of cells with the Src inhibitor PP2 before NT exposure decreases NT-induced IGF-1R phosphorylation. In addition, inhibition of IGF-1R activation by either its specific antagonist AG1024 or siRNA against IGF-1 significantly reduces NT-induced IL-8 expression and NF-κB-dependent reporter gene expression. Pretreatment with AG1024 also inhibits Akt activation and apoptosis induced by NT. Silencing of Akt expression by siRNA also substantially attenuates NT-induced IL-8 promoter activity and NF-κB-dependent reporter gene expression. This is the first report to indicate that NT transactivates IGF-1R and that this response is linked to Akt phosphorylation and NF-κB activation, contributing to both pro-inflammatory and tissue repair signaling pathways in response to NT in colonic epithelial cells. We propose that IGF-1R activation represents a previously unrecognized key pathway involved in the mechanisms by which NT and NTR1 modulate colonic inflammation and inflammatory bowel disease.  相似文献   

4.
Cytoplasmic caspase recruiting domain (CARD)-containing molecules often function in the induction of potent antimicrobial responses in order to protect mammalian cells from invading pathogens. Retinoic acid-induced gene-I (RIG-I) and nucleotide binding oligomerization domain 2 (NOD2) serve as key factors in the detection of viral and bacterial pathogens, and in the subsequent initiation of innate immune signals to combat infection. RIG-I and NOD2 share striking similarities in their cellular localization, both localize to membrane ruffles in non-polarized epithelial cells and both exhibit a close association with the junctional complex of polarized epithelia. Here we show that RIG-I and NOD2 not only colocalize to cellular ruffles and cell-cell junctions, but that they also form a direct interaction that is mediated by the CARDs of RIG-I and multiple regions of NOD2. Moreover, we show that RIG-I negatively regulates ligand-induced nuclear factor-κB (NF-κB) signaling mediated by NOD2, and that NOD2 negatively regulates type I interferon induction by RIG-I. We also show that the three main Crohn disease-associated mutants of NOD2 (1007fs, R702W, G908R) form an interaction with RIG-I and negatively regulate its signaling to a greater extent than wild-type NOD2. Our results show that in addition to their role in innate immune recognition, RIG-I and NOD2 form a direct interaction at actin-enriched sites within cells and suggest that this interaction may impact RIG-I- and NOD2-dependent innate immune signaling.  相似文献   

5.
Curcumin is the active ingredient of the spice turmeric and has been shown to have a number of pharmacologic and therapeutic activities including antioxidant, anti-microbial, anti-inflammatory, and anti-carcinogenic properties. The anti-inflammatory effects of curcumin have primarily been attributed to its inhibitory effect on NF-κB activity due to redox regulation. In this study, we show that curcumin is an immunosuppressive phytochemical that blocks T cell-activation-induced Ca(2+) mobilization with IC(50) = ~12.5 μM and thereby prevents NFAT activation and NFAT-regulated cytokine expression. This finding provides a new mechanism for curcumin-mediated anti-inflammatory and immunosuppressive function. We also show that curcumin can synergize with CsA to enhance immunosuppressive activity because of different inhibitory mechanisms. Furthermore, because Ca(2+) is also the secondary messenger crucial for the TCR-induced NF-κB signaling pathway, our finding also provides another mechanism by which curcumin suppresses NF-κB activation.  相似文献   

6.
IgA antibodies constitute an important part of the mucosal immune system, but their immunotherapeutic potential remains rather unexplored, in part due to biotechnological issues. For example, the IgA2m(1) allotype carries an unusual heavy and light chain pairing, which may confer production and stability concerns. Here, we report the generation and the biochemical and functional characterization of a P221R-mutated IgA2m(1) antibody against the epidermal growth factor receptor (EGFR). Compared with wild type, the mutated antibody demonstrated heavy chains covalently linked to light chains in monomeric as well as in joining (J)-chain containing dimeric IgA. Functional studies with wild type and mutated IgA2m(1) revealed similar binding to EGFR and direct effector functions such as EGFR down-modulation and growth inhibition. Furthermore, both IgA molecules triggered similar levels of indirect tumor cell killing such as antibody-dependent cell-mediated cytotoxicity (ADCC) by isolated monocytes, activated polymorphonuclear cells, and human whole blood. Interestingly, the dimeric IgA antibodies demonstrated higher efficiency in direct as well as in indirect effector mechanisms compared with their respective monomeric forms. Both wild type and mutated antibody triggered effective FcαRI-mediated tumor cell killing by macrophages already at low effector to target cell ratios. Interestingly, also polarized macrophages mediated significant IgA2-mediated ADCC. M2 macrophages, which have been described as promoting tumor growth and progression, may convert to ADCC-mediating effector cells in the presence of EGFR-directed antibodies. In conclusion, these results provide further insight into the immunotherapeutic potential of recombinant IgA antibodies for tumor immunotherapy and suggest macrophages as an additional effector cell population.  相似文献   

7.
8.
Stretch-induced differentiation of lung fetal type II epithelial cells is mediated through EGFR (ErbB1) via release of HB-EGF and TGF-α ligands. Employing an EGFR knock-out mice model, we further investigated the role of the ErbB family of receptors in mechanotranduction during lung development. Deletion of EGFR prevented endogenous and mechanical stretch-induced type II cell differentiation via the ERK pathway, which was rescued by overexpression of a constitutively active MEK. Interestingly, the expression of ErbB4, the only ErbB receptor that EGFR co-precipitates in wild-type cells, was decreased in EGFR-deficient type II cells. Similar to EGFR, ErbB4 was activated by stretch and participated in ERK phosphorylation and type II cell differentiation. However, neuregulin (NRG) or stretch-induced ErbB4 activation were blunted in EGFR-deficient cells and not rescued after ErbB4 overexpression, suggesting that induction of ErbB4 phosphorylation is EGFR-dependent. Finally, we addressed how shedding of ligands is regulated by EGFR. In knock-out cells, TGF-α, a ligand for EGFR, was not released by stretch, while HB-EGF, a ligand for EGFR and ErbB4, was shed by stretch although to a lower magnitude than in normal cells. Release of these ligands was inhibited by blocking EGFR and ERK pathway. In conclusion, our studies show that EGFR and ErbB4 regulate stretch-induced type II cell differentiation via ERK pathway. Interactions between these two receptors are important for mechanical signals in lung fetal type II cells. These studies provide novel insights into the cell signaling mechanisms regulating ErbB family receptors in lung cell differentiation.  相似文献   

9.
Chronic kidney diseases cause significant morbidity and mortality in the population. During renal injury, kidney-localized proteinases can signal by cleaving and activating proteinase-activated receptor-2 (PAR2), a G-protein-coupled receptor involved in inflammation and fibrosis that is highly expressed in renal tubular cells. Following unilateral ureteric obstruction, PAR2-deficient mice displayed reduced renal tubular injury, fibrosis, collagen synthesis, connective tissue growth factor (CTGF), and α-smooth muscle actin gene expression at 7 days, compared with wild-type controls. In human proximal tubular epithelial cells in vitro, PAR2 stimulation with PAR2-activating peptide (PAR2-AP) alone significantly up-regulated the expression of CTGF, a potent profibrotic cytokine. The induction of CTGF by PAR2-AP was synergistically increased when combined with transforming growth factor-β (TGF-β). Consistent with these findings, treating human proximal tubular epithelial cells with PAR2-AP induced Smad2/3 phosphorylation in the canonical TGF-β signaling pathway. The Smad2 phosphorylation and CTGF induction required signaling via both the TGFβ-receptor and EGF receptor suggesting that PAR2 utilizes transactivation mechanisms to initiate fibrogenic signaling. Taken together, our data support the hypothesis that PAR2 synergizes with the TGFβ signaling pathway to contribute to renal injury and fibrosis.  相似文献   

10.
ErbB3 is a member of the ErbB family of receptor tyrosine kinases. It is unique because it is the only member of the family whose kinase domain is defective. As a result, it is obliged to form heterodimers with other ErbB receptors to signal. In this study, we characterized the interaction of ErbB3 with the EGF receptor and ErbB2 and assessed the effects of Food and Drug Administration-approved therapeutic agents on these interactions. Our findings support the concept that ErbB3 exists in preformed clusters that can be dissociated by NRG-1β and that it interacts with other ErbB receptors in a distinctly hierarchical fashion. Our study also shows that all pairings of the EGF receptor, ErbB2, and ErbB3 form ligand-independent dimers/oligomers. The small-molecule tyrosine kinase inhibitors erlotinib and lapatinib differentially enhance the dimerization of the various ErbB receptor pairings, with the EGFR/ErbB3 heterodimer being particularly sensitive to the effects of erlotinib. The data suggest that the physiological effects of these drugs may involve not only inhibition of tyrosine kinase activity but also a dynamic restructuring of the entire network of receptors.  相似文献   

11.
Toll-like receptors (TLRs) are the key molecular sensors used by the mammalian innate immune system to detect various types of pathogens. Tlr13 is a novel and uncharacterized member of the mammalian TLR family. Here we report the cloning and characterization of tlr13. Tlr13 is predominantly expressed in the spleen, particularly in dendritic cells and macrophages. Tlr13 appears to activate a MyD88- and TAK1-dependent TLR signaling pathway, inducing the activation of NF-κB. This receptor can also activate type 1 interferon through IRF7. Furthermore, Tlr13 seems to be another intracellular TLR. Remarkably, cells expressing tlr13 fail to respond to known TLR ligands but instead respond specifically to vesicular stomatitis virus. Cells with the knockdown of tlr13 are highly susceptible to vesicular stomatitis virus infection. Thus, these results provide an important insight into the potential role of the novel Toll-like receptor tlr13 in the recognition of viral infection.  相似文献   

12.
Endothelial cell (EC) Toll-like receptor 2 (TLR2) activation up-regulates the expression of inflammatory mediators and of TLR2 itself and modulates important endothelial functions, including coagulation and permeability. We defined TLR2 signaling pathways in EC and tested the hypothesis that TLR2 signaling differs in EC and monocytes. We found that ERK5, heretofore unrecognized as mediating TLR2 activation in any cell type, is a central mediator of TLR2-dependent inflammatory signaling in human umbilical vein endothelial cells, primary human lung microvascular EC, and human monocytes. Additionally, we observed that, although MEK1 negatively regulates TLR2 signaling in EC, MEK1 promotes TLR2 signaling in monocytes. We also noted that activation of TLR2 led to the up-regulation of intracellularly expressed TLR2 and inflammatory mediators via NF-κB, JNK, and p38-MAPK. Finally, we found that p38-MAPK, JNK, ERK5, and NF-κB promote the attachment of human neutrophils to lung microvascular EC that were pretreated with TLR2 agonists. This study newly identifies ERK5 as a key regulator of TLR2 signaling in EC and monocytes and indicates that there are fundamental differences in TLR signaling pathways between EC and monocytes.  相似文献   

13.
14.
The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys63-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.  相似文献   

15.
16.
17.
Endocytosis positively and negatively regulates cell surface receptor signaling by temporally and spatially controlling interactions with downstream effectors. This process controls receptor-effector communication. However, the relationship between receptor endocytic trafficking and cell physiology is unclear. In MDA-MB-468 cells, cell surface EGF receptors (EGFRs) promote cell growth, whereas intracellular EGFRs induce apoptosis, making these cells an excellent model for studying the endocytic regulation of EGFR signaling. In addition, MDA-MB-468 cells have limited EGFR degradation following stimulation. Here, we report that in MDA-MB-468 cells the phosphorylated EGFR accumulates on the limiting membrane of the endosome with its carboxyl terminus oriented to the cytoplasm. To determine whether perturbation of EGFR trafficking is sufficient to cause apoptosis, we used pharmacological and biochemical strategies to disrupt EGFR endocytic trafficking in HeLa cells, which do not undergo EGF-dependent apoptosis. Manipulation of HeLa cells so that active EGF·EGFRs accumulate on the limiting membrane of endosomes reveals that receptor phosphorylation is sustained and leads to apoptosis. When EGF·EGFR complexes accumulated in the intraluminal vesicles of the late endosome, phosphorylation of the receptor was not sustained, nor did the cells undergo apoptosis. These data demonstrate that EGFR-mediated apoptosis is initiated by the activated EGFR from the limiting membrane of the endosome.  相似文献   

18.
19.
Aberrant receptor tyrosine kinase phosphorylation (pRTK) has been associated with diverse pathological conditions, including human neoplasms. In lung cancer, frequent liver kinase B1 (LKB1) mutations correlate with tumor progression, but potential links with pRTK remain unknown. Heightened and sustained receptor activation was demonstrated by LKB1-deficient A549 (lung) and HeLaS3 (cervical) cancer cell lines. Depletion (siRNA) of endogenous LKB1 expression in H1792 lung cancer cells also correlated with increased pRTK. However, ectopic LKB1 expression in A549 and HeLaS3 cell lines, as well as H1975 activating-EGF receptor mutant lung cancer cell resulted in dephosphorylation of several tumor-enhancing RTKs, including EGF receptor, ErbB2, hepatocyte growth factor receptor (c-Met), EphA2, rearranged during transfection (RET), and insulin-like growth factor I receptor. Receptor abrogation correlated with attenuation of phospho-Akt and increased apoptosis. Global phosphatase inhibition by orthovanadate or depletion of protein tyrosine phosphatases (PTPs) resulted in the recovery of receptor phosphorylation. Specifically, the activity of SHP-2, PTP-1β, and PTP-PEST was enhanced by LKB1-expressing cells. Our findings provide novel insight on how LKB1 loss of expression or function promotes aberrant RTK signaling and rapid growth of cancer cells.  相似文献   

20.
To attain fertilization the spermatozoon binds to the egg zona pellucida (ZP) via sperm receptor(s) and undergoes an acrosome reaction (AR). Several sperm receptors have been described in the literature; however, the identity of this receptor is not yet certain. In this study, we suggest that the α7 nicotinic acetylcholine receptor (α7nAChR) might be a sperm receptor activated by ZP to induce epidermal growth factor receptor (EGFR)-mediated AR. We found that isolated ZP or α7 agonists induced the AR in sperm from WT but not α7-null spermatozoa, and the induced AR was inhibited by α7 or EGFR antagonists. Moreover, α7-null sperm showed very little binding to the egg, and microfluidic affinity in vitro assay clearly showed that α7nAChR, as well as EGFR, interacted with ZP3. Induction of EGFR activation and the AR by an α7 agonist was inhibited by a Src family kinase (SFK) inhibitor. In conclusion we suggest that activation of α7 by ZP leads to SFK-dependent EGFR activation, Ca(2+) influx, and the acrosome reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号