首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Autoregulation of the DNA replication gene dnaA in E. coli K-12   总被引:36,自引:0,他引:36  
R E Braun  K O'Day  A Wright 《Cell》1985,40(1):159-169
  相似文献   

10.
11.
12.
The arginine regulatory protein of Pseudomonas aeruginosa, ArgR, is essential for induction of operons that encode enzymes of the arginine succinyltransferase (AST) pathway, which is the primary route for arginine utilization by this organism under aerobic conditions. ArgR also induces the operon that encodes a catabolic NAD(+)-dependent glutamate dehydrogenase (GDH), which converts l-glutamate, the product of the AST pathway, in alpha-ketoglutarate. The studies reported here show that ArgR also participates in the regulation of other enzymes of glutamate metabolism. Exogenous arginine repressed the specific activities of glutamate synthase (GltBD) and anabolic NADP-dependent GDH (GdhA) in cell extracts of strain PAO1, and this repression was abolished in an argR mutant. The promoter regions of the gltBD operon, which encodes GltBD, and the gdhA gene, which encodes GdhA, were identified by primer extension experiments. Measurements of beta-galactosidase expression from gltB::lacZ and gdhA::lacZ translational fusions confirmed the role of ArgR in mediating arginine repression. Gel retardation assays demonstrated the binding of homogeneous ArgR to DNA fragments carrying the regulatory regions for the gltBD and gdhA genes. DNase I footprinting experiments showed that ArgR protects DNA sequences in the control regions for these genes that are homologous to the consensus sequence of the ArgR binding site. In silica analysis of genomic information for P. fluorescens, P. putida, and P. stutzeri suggests that the findings reported here regarding ArgR regulation of operons that encode enzymes of glutamate biosynthesis in P. aeruginosa likely apply to other pseudomonads.  相似文献   

13.
DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, seems to be regulated through its binding to acidic phospholipids, such as cardiolipin. In our previous paper (Hase, M., Yoshimi, T., Ishikawa, Y., Ohba, A., Guo, L., Mima, S., Makise, M., Yamaguchi, Y., Tsuchiya, T., and Mizushima, T. (1998) J. Biol. Chem. 273, 28651-28656), we found that mutant DnaA protein (DnaA431), in which three basic amino acids (Arg(360), Arg(364), and Lys(372)) were mutated to acidic amino acids showed a decreased ability to interact with cardiolipin in vitro, suggesting that DnaA protein binds to cardiolipin through an ionic interaction. In this study, we construct three mutant dnaA genes each with a single mutation and examined the function of the mutant proteins in vitro and in vivo. All mutant proteins maintained activities for DNA replication and ATP binding. A mutant protein in which Lys(372) was mutated to Glu showed the weakest interaction with cardiolipin among these three mutant proteins. Thus, Lys(372) seems to play an important role in the interaction between DnaA protein and acidic phospholipids. Plasmid complementation analyses revealed that all these mutant proteins, including DnaA431 could function as an initiator for chromosomal DNA replication in vivo.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号